100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Notas de lectura

Warwick EC226 - Econometrics T1 Full Revision Notes (1st Final Exam)

Puntuación
-
Vendido
-
Páginas
19
Subido en
02-03-2024
Escrito en
2022/2023

Pass your exams with a first!!! Providing an in-depth and comprehensive review of the EC226: Econometrics course from Warwick Economics. The revision notes were written by a student who scored a solid first in the module and final exams. Revision notes include content from all the weeks from term 1. For the full year, buy the combo or term two packs.

Mostrar más Leer menos
Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Desconocido
Grado

Información del documento

Subido en
2 de marzo de 2024
Número de páginas
19
Escrito en
2022/2023
Tipo
Notas de lectura
Profesor(es)
Jeremy smith
Contiene
Todas las clases

Temas

Vista previa del contenido

outcome
dependent
Two-variable ↑

regression Specify
.

:
ETQIQ
-
= L+ BL in
equinately :
2

·ndepome/ual Y L + P + negremio
=
.
or
er




Basic notel to
we observe (22 3) .
as
having come
P .
dist and E =
y -

E(y)M) =
y -


x
-




BM

-




lawe Passical Lineor Regression Mode)
May
causal interpretation . .




>
- can be u re a
for forecasting
Conditional enfectation >
-
Data : n observations ,
(2 , 4, 1
, .... (Ru ,
In)


of of Y Yi Ei for
-
·
It y conditional th = 2 + XiB +
each
given ze-average on i = 1 m .



, ....




being


I
a
particular value ·




on : - (II ElEl + ] = 0
Ei has mean 8
for anyth
Assumptions
·
ie
. Condition (restrict) the data set for fined # of education (V(3i(X) =
V(Ei) =
02 >
-
navance-constant .




I look of A r.
Earnings for that restricted group .


B Cou(Ei ,
3 ; (2) =
0 for ifj

·
E(9(2) -'conditional enfectation 14) Eil X ~ Normas (0 5
,




-(no beteroscedasticity)
*
↳ ↳ has
function
a constant variance .




regression
.




Explaining
Conditions :




Correlation & Causality (video 2) .
(1) E
: = 0
for any
22 .
Do condition violated when :





hiB represent out else than conditional enfectation -




check
Statistical Correlation
*

· - In 84 have systematic relations .
when E(3/mi) 70 when 22 depends on 3 .




coontry)
=if at l
>
-




of
regresion error hasindegenevariance
(2) i s
regoe




Reminder
·
- Could 41 ,
=

-(x-Mse) (4 My) - L . education example
:
nagex Education years
-




↳ low
where
g
E(Xh
My E14) (a) Cor(x A for
= =
vor
=
HS education
; ; , von uage
among
Tron
for mage
among Uni education -




>
- constant variance inplier ,
a
plot of re s i d u a l vs (2) har a
pattern
that forms a holitontal and
palle n

B) information .
abst Ith person has new
infor alt .




Ith person

Correlation
·


# Correlation .




holdswhenwahaueassectionaldaa radorDateene
O
(4) Assumption for nathematical Convenience
.




When can we view correlation as a causal relationship ? Ordinary Least Square Estimation : (0()) (Video 4)

↳ Medical & Economic Example . ·
Estimate <, B from (m , y 1 . ,
...
(W , Un) .




↳ (a b) (x B)
wite , for estimates
of ,
.




Classical Linear Regression Hokel. (video 3) idea :
Yi-a-bhi-B-bluEi ;
+



close 100

& b B.
diff
by minimizing ,
a x =




Conditional Expectation (lined
.




Least square estimation :
regression) -




choose a b such that



- ,



minimited
nb) This in
b) (Yn function

=1412S-aimB'where B # from aa (4 + + a
-




a
-




a, some not m,
minay
-


are entiate
-




he ,
...




4
(close to 07 .




-

linor function .




How computer ?
is a & b
- stateevation the
calculus
.


"observations
*
t

, Hof) 0:
%a (Yi-a-Mib) ,
= -




2 (4 ; - a - Mib) () Interpreting Regression Coefficient moder 2
(video 21


o
=
4/b * (4 ,
-


a -
Mib)" = -




z (4 , -

a -



zib)x; Ch ↳

Y; = x +
Blog(xi) +
Ei


Population:) Fac a o (4 , - a
-



-i b) = 8 : 3 (4 , hib)
- E if 2 4 by small amount $ :

p[log(n b) togle
+
-




- (4 , - ib E
[Y14I = C +
Blogb)
E(y(x Al
na =


,
(4 :
-


2; b) + = 2 +
Blog(n A) +




a:
Y ,
(4 , -Rib) 6 Y, Y
is e I compute the
change in
average
to
Blog (I +
n

I
embl
Substitute into other foc . (2) ↳2)
By approximation rule :
if $/ in small (cose to 01


0
: (4 :- Jn)ze;
-us l el i s e. >
-
log
(1 + 9/2) =
&ke
-Simplify algebraically mone a
cane

- b



- derot
Benital On
Wil
Therefore
:
5(4( -x + 11 -



E(414-N =
BPk

/ 100 =
/ is % change inse ,
so when 2 4
by 1).,


regression
re s i d u a l the
average of Y
changes by P/100




L
I
.




④ =
Y; - a-Tib in an estimate
of Ei =
Yi-x-miB ⑳
⑱@




diffaction caluim conclusion I
#wrough
-
we can estimate - =
V(2) by same .




si =
yn Ee? -

> sample analogue
- O

i =
1


You ( <+ Blogu) =
P
gn = B'
dof correction .




let the [CUIU) (2
the BY be
charge in when we
change
- -
by Dm .
- For male bu
,
we have embY/ Bu
the

We-Two variable Cont -B/x
regression =
4 B
. : =




Interpreting Regression crefflient (video 1) .

same
definition -




L what does the
reg conffient represent
.
?
Interpreting Regression Coefficient (Model 3) (Video 31

Yi = L+
BR, +
Er =
y wage ,
-causation
,
compare (212/25
E(Y(2 13) =
= d +
B13 .

instead , we can
transform Y to
log(4) leg earnings)
.
-




E(4(x =
12) = > + B12 log(Yi) =
a +
Bxi +
Ei
- o
x+px
differentiate
=


difference = E(4(x =
B) -
+
(4(k 1) = =
(c +
BB) -
( + BR) =



B art .
in o N =
B
sx
The 1 unit then Y
by B
to interpret B by
How =
changes
-


Ar
.

.




,




take the
definition of
literal derivative




T-xm to
differential Calculu La (rate a
of charge of
&
By in the 12
same
laying
: as




ofhange E(log Y ! )
=
4/jn(k + pm) =

By
same a n swe r relative As
to rate is I
~log (4 -Log (10) ,

, . . .
LetYo be the
original
va l u e
of Y and Y, be the s
ummary
:
4 c a re
(i)
·mine( it zen byjwheree4
i




ades a nde
Y
of by


Dann
I
changes
new va l u e DD i Yo
when . e
, AY =
Y,



log(4,) -Ag(y) 34ly B .





=
p
=
0
log
(41) -




lig (10) =
BAM
/ An


sever
emplonator and
log
(4 1
, -log (10) =

log (" /y) =

log (1 +

** ) *
2/

4
# = tyo.
hi
is
Box
/When Hypothesis Testing
AY
by 1 unit (video 5)
Mo
Co = 24 24
,
by 10
. .

Aft computing estimators what do e do ? - It .




Methods (1 At[0 1)
Note 1) = D
only good for
:
approximation
log
on + is .




I Eei
↳ Y
Bo
Another Method : Ho to I, and
Yo to , ↳
selm -
~
Tro




red
by




Review HT Procedure -



(1)
Specify Ho :
B =
Po

Specify
12-sdal
12) H: BFBo
table
.



(1 Choose
significance
Level (21 ; Find correspond ,
value from t-dist


Bob
14 Compute T :




(video 4)
Interpreting Regression Coefficients
Model 4 15) Decide
. whether to accept on
reject Ho


(indep ) .




(Video 6)
Forecasting

Both depended & explanator variable are
transformed .

.




loglin
log (Yi) L
Blog (i) Ei deviative
= + +


Im
L :




g(1/2)
Ja
=
0(x +
Ploglill =

Blog en

day I
of
nation
Because log litlog
10)
in
sm




log
log (70)
= P/p = big (n) -Mogl in
Bl Forming Confidence Internal


provde
cur tai
a
range of values on which the actual values u
probability -




-BW/m T0)
Y
log (3 /) log) *
=
0 1+
B
=
=
prediction


Lin el tele9
,
M



In
,
Unt
_
log (1 + 4 M) :
hi
Yo
.
6
open / Mobability 1-2 .
er ror

-
#x




/sli In the
↳ 4 4
When in 4
my 1 . by B% >
-
+




Clarial linear regression Model Assumption 4
.
$17.03
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
joebloggs123 The University of Warwick
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
7
Miembro desde
3 año
Número de seguidores
4
Documentos
11
Última venta
1 año hace

4.3

4 reseñas

5
1
4
3
3
0
2
0
1
0

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes