100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Examen

COS1501 EXAM PACK 2022

Puntuación
4.0
(2)
Vendido
20
Páginas
94
Grado
A+
Subido en
24-08-2021
Escrito en
2022/2023

Recent exam questions and answers and summarized notes for exam preparation. or for assistance. All the best on your exams!!

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Grado

Información del documento

Subido en
24 de agosto de 2021
Número de páginas
94
Escrito en
2022/2023
Tipo
Examen
Contiene
Preguntas y respuestas

Temas

Vista previa del contenido

COS1501

EXAM PACK

, 2
COS1501
Example examination paper with discussions




SECTION 1
SETS AND RELATIONS
(Questions 1 to 12) (12 marks)


Questions 1 to 8 relate to the following sets:
Suppose U = {1, {2, 3}, 3, d, {d, e}, e} is a universal set with the following subsets:

A = {{2, 3}, 3, {d, e}}, B = {1, {2, 3}, d, e} and C = {1, 3, d, e}.

Before attempting the questions, let us write down the sets U, A, B and C, by adding spaces
between elements, so that common elements are vertically grouped:
U = {1, {2, 3}, 3, d, {d, e}, e}
A = { {2, 3}, 3, {d, e}}
B = {1, {2, 3}, d, e}
C = {1, 3, d, e}

We can clearly see, for example, that element {d, e} in U appears in subset A only. Or that
elements 1, d and e in U, also appear in subsets B and C. Or that the intersection of A and C
contains element 3 only. If you find it difficult to see which elements are in which set, it may
help you to write it in this way on rough in the exam.

Question 1
Which one of the following sets represents A  B?

1. {1, 2, 3, d, e}
2. {1, {2, 3}, 3, d, e}
3. {1, {2, 3}, 3, {d, e}}
4. {1, {2, 3}, 3, {d, e}, d, e}

Discussion:
A = { {2, 3}, 3, {d, e}}
B = {1, {2, 3}, d, e}
A  B represents the union of the sets A and B. This means, it contains elements that are in A
or in B or in both A and B. (Study guide p. 41).
Thus A  B = {1, {2, 3}, 3, d, {d, e}, e}. This corresponds to alternative 4. Remember that the
order of the elements in the set does not matter, as long as all elements are in the set. We
also do not repeat the same element in the set – although the element {2, 3} is in both A and
B, it only appears once in the set A  B.




[TURN OVER]

, 3
COS1501
Example examination paper with discussions


Question 2
Which one of the following sets represents B  C?

1. {1, 3, d, e}
2. {1, d, e}
3. {d, e}
4. {3, {2, 3}}

Discussion:
B = {1, {2, 3}, d, e}
C = {1, 3, d, e}
The intersection of B and C contains all the elements that are in both subsets B and C, ie
elements that are common in B and C (Study guide p. 42).
Thus B  C = {1, d, e}, corresponding to alternative 2.

Question 3
Which one of the following sets represents C – A?

1. {1, {2, 3}, d, e, {d, e}}
2. {3, d, e}
3 {}
4. {1, d, e}

Discussion:
A = { {2, 3}, 3, {d, e}}
C = {1, 3, d, e}
C – A (Set difference / C without A) is the set of all elements that are in C, but not in A (Study
guide p. 42). This means that if an element appears in both A and C, it will be removed from
C to get C – A. It is clear that element 3 is in both A and C and should be removed from C,
thus
C – A = {1, d, e}, corresponding to alternative 4.




[TURN OVER]

, 4
COS1501
Example examination paper with discussions


Question 4
Which one of the following sets represents U + B?

1. U
2. {3, {d, e}}
3. {1, {2, 3}, d, e}
4. (U – A) – C

Discussion:
U = {1, {2, 3}, 3, d, {d, e}, e}
B = {1, {2, 3}, d, e}

U + B (symmetric set difference) is the set of elements that are in U or in B, but not in both
(Study guide p. 43). This means we have to remove the elements that are in both U and B,
which are elements 1, {2, 3}, d and e. We then remain with elements 3 and {d, e}, thus
U + B = {3, {d, e}}, which corresponds to alternative 2.

Question 5
Which one of the following sets represents C  B ?

1. {3}
2. {1, d, e}
3. {1, 3, d, e}
4. {1, 3, {d, e}}

Discussion:
U = {1, {2, 3}, 3, d, {d, e}, e}
B = {1, {2, 3}, d, e}
C = {1, 3, d, e}

We first determine B(the complement of B – study guide p. 42). The complement of B is the
set of all elements that is in U but not in B. From the above it is clear that if we remove the
elements 1, {2, 3}, d and e in B from U, we are left with elements 3 and {d, e}, therefore,
B = {3 , {d, e}}. Now we can determine which elements should be in C  B.
C  B = {1, 3, d, e}  {3, {d, e}} = {3}, corresponding to alternative 1. (See definition of
intersection in Study guide p.42).
.




[TURN OVER]
$3.04
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Reseñas de compradores verificados

Se muestran los 2 comentarios
3 año hace

3 año hace

4.0

2 reseñas

5
0
4
2
3
0
2
0
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
EduPal University of South Africa (Unisa)
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
149163
Miembro desde
7 año
Número de seguidores
35995
Documentos
4310
Última venta
5 horas hace

4.2

13554 reseñas

5
7802
4
2688
3
1790
2
455
1
819

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes