100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting Moleculaire biologie

Puntuación
-
Vendido
1
Páginas
29
Subido en
18-05-2021
Escrito en
2020/2021

Volledige samenvatting van alle college's, werkgroepen en te lezen hoofdstukken

Institución
Grado










Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
Subido en
18 de mayo de 2021
Número de páginas
29
Escrito en
2020/2021
Tipo
Resumen

Temas

Vista previa del contenido

Inhoudsopgave
Thema 2 Replicatie, Transcriptie en Translatie.........................................................................................................2
ZSO1: DNA-replicatie en PCR................................................................................................................................2
ZSO2: Transcriptie en Translatie...........................................................................................................................4

Thema 3 DNA-technieken.........................................................................................................................................7
ZSO3: DNA-analyse, hybridisatie en kloneren......................................................................................................7
Labster: kloneren................................................................................................................................................10
VC: Genoomaanpassingen met CRIPSR-CAS......................................................................................................11
ZSO 4: Analyse en manipulatie van genen en genexpressie..............................................................................12
VC: Molecular biology in the clinical microbiology lab......................................................................................15

Thema 4 celcyclus en apoptose..............................................................................................................................16
ZSO 5: Celcyclus regulatie...................................................................................................................................16
ZSO 6: Apoptose.................................................................................................................................................19

Thema 5 Virussen....................................................................................................................................................22
ZSO7: Virussen....................................................................................................................................................22

Thema 6 ontwikkelingsbiologie...............................................................................................................................26
ZSO8: moleculaire basis van differentiatie.........................................................................................................26
ZSO9: Differentiatie en ontwikkeling Drosophilia..............................................................................................27
ZSO10: Drosophila ontwikkelingen en Hox genen.............................................................................................29




1

,Thema 2 Replicatie, Transcriptie en Translatie
ZSO1: DNA-replicatie en PCR
DNA-molecuul
 Je kunt beschrijven hoe het DNA molecuul is opgebouwd.
Een DNA-molecuul heeft polariteit, de boven- en onderkant van de DNA-keten zijn
verschillend. De ene kant heeft een 5’ uiteinde (fosfaat) en de andere kant heeft een 3’
uiteinde (hydroxylgroep). In een helix zijn de twee DNA-strengen antiparallel aan elkaar >
het 3’ eind staat tegenover een 5’ eind.

DNA-replicatie mechanisme
 Je kunt uitleggen hoe in de cel DNA replicatie verloopt en de daarbij
behorende reacties benoemen en omschrijven.
Bij DNA-replicatie zijn verschillende enzymen betrokken die moeten binden aan enkelstrengs
DNA. De eerste stap bij DNA-replicatie is dus het verbreken van het dubbelstrengs DNA. Dit
proces wordt geïnitieerd door de binding van initiator proteins aan de dubbele helix (COO1)
waardoor er een groot eiwit-DNA-complex gevormd wordt dat tot destabilisatie van de
dubbele helix leidt. De sequentie waar het eiwit-DNA-complex gevormd wordt en waar de
eerste destabilisatie dubbele helix plaatsvindt (waar DNA-replicatie begint) wordt de
replication orgin (Ori) genoemd. Het eiwit-DNA-complex zorgt dat 2 DNA-helicases
gebonden aan helicase loaders aan het enkelstrengs DNA wordt gebonden. De helicase
loaders komen los van het helicase enzym waardoor dit actief wordt en dubbelstrengs DNA
gaat verbreken in tegengestelde richting. Single-strand DNA-binding (SSB) proteins
voorkomen dat verbroken enkelstrengs DNA opnieuw bindingen gaat vormen met zichzelf of
complementaire streng.
DNA primase bindt een korte sequentie vrije trifosfaat nucleotide complementair aan de
ketens. Deze korte sequenties worden RNA-primers genoemd. Er worden dus 2 RNA-primers
gevormd per ori.
DNA-polymerase bindt aan de RNA-primers en maakt complementaire kopie van de enkele
DNA-streng in de 5’-naar-3’ richting. Hierdoor ontstaan een asymmetrische replicatie vork
met twee verschillende strengen:
- Leidende streng (3’-5’): DNA-polymerase beweegt van
5’ naar 3’ en kan dus ongestoord door synthetiseren
achter de helicase aan.
- Volgende streng (5’-3’): DNA-polymerase kan niet van
3’ naar 5’ synthetiseren en moet dus in kleine stukken
‘terugwaarts’ gesynthetiseerd worden. Deze kleine
stukken hete okazaki fragmenten. In deze streng
moeten steeds opnieuw RNA-primers wordt
gesynthetiseerd (aantal = totaal bp/okazaki fragm)
waarna ze vervangen worden door het enzym
endonuclease. Het enzym ligase koppelt vervolgens alle
okazaki fragmenten aan elkaar.
DNA-polymerase heeft de neiging om snel van DNA los te komen. Een sliding clamp aan de
DNA-polymerase helpt dit te voorkomen. Sliding clamps binden aan DNA-polymerase met
de hulp van clamp loaders. Clamp loaders binden met ATP waarna hun tertiare structuur met
een sliding clamp kan binden die tijdens de binding splijt waardoor een primer template
junction zich in de clamp kan positioneren. De ATP in de clamp loader wordt gehydrolyseert


2

, (ADP) waardoor de laoder loslaat van de clamp en de clamp sluit met de primer template
junction in zich waarna DNA-polymerase kan binden.




Herstelmechanisme tijdens DNA-replicatie
 Je kunt uitleggen hoe fouten gemaakt tijdens DNA replicatie hersteld
worden.
Het gebeurt maar heel weinig dat er verkeerde nucleotide worden ingebouwd in een DNA-
keten omdat DNA-polymerase zichzelf controleert op twee manieren. (1) er is een hogere
affiniteit voor een goede nucleotide dan een foute nucleotide aan DNA-polymerase omdat dit
qua energie gunstiger is. (2) de tertiare structuur van DNA-polymerase veranderd wanneer er
een goede nucleotide bindt, dit proces vind minder snel plaats bij een foute nucleotide
waardoor een foute nucleotide binding minder snel tot stand komt. Wanneer er dan toch een
foute nucleotide is gebonden is het 3’-OH niet effectief als template voor de volgende
nucleotide. Een aparte subunit in de DNA-polymerase genaamd de exonuclease ‘knipt’ deze
foute nucleotide af van de 3’-naar-5’ kant.
WAAROM polymerase niet effectief is van 3’-naar 5’ kant

PCR
 Je kunt de PCR uitleggen en kunt beargumenteren of en hoe een gegeven
vraagstelling opgelost kan worden met PCR.
 Je bent in staat om aan de hand van een gegeven nucleotide sequentie de
primers op te schrijven nodig voor PCR van DNA.
Een veelgebruikte methode om de hoeveelheid DNA te vergroten is de polymerase chain
reaction (PCR). Tijdens deze methode vinden er 3 incubaties plaats bij verschillende
tempraturen:
1. 94 = denaturatie dubbelstrengs DNA
2. 55 = primer binding
3. 72 = optimale tempratuur taq-DNA-polymerase uit bacteriën in heet water bronnen.
Dit proces wordt een aantal keer herhaalt waarna je na 3 cylci 8 dubbelstrengs DNA-ketens
hebt (2-4-8). Welke stukken DNA worden geamplificeerd hangt af van de primers die worden
gebruikt. Deze kunnen niet te kort zijn omdat ze specifiek
moeten zijn voor 1 sequentie. Wanneer de leidende streng de
volgende sequentie heeft: TGCTGACTTGTACTTTATGTT
moeten de volgende primers worden gebruikt:
- Leidende streng heeft reversed primer > 5’ AACAT 3’
- Volgende streng heeft forward primer > 5’ TGCTG 3’




3
$7.18
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
jasmijnvangool Universiteit Leiden
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
22
Miembro desde
4 año
Número de seguidores
8
Documentos
15
Última venta
2 año hace

5.0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes