100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Samenvatting - 3-Statistiek (1015FTISTA)

Puntuación
-
Vendido
2
Páginas
42
Subido en
21-05-2023
Escrito en
2022/2023

Een samenvatting van het vak 3-Statistieken. Een samenvatting opgebouwd door eigen notities, oefeningen en powerpoints.

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

Subido en
21 de mayo de 2023
Número de páginas
42
Escrito en
2022/2023
Tipo
Resumen

Temas

Vista previa del contenido

3-Statistiek
Table of Contents
Kansrekenen.........................................................................................................................................3
Uniforme kansverdelingen...................................................................................................................8
Productregel..........................................................................................................................................9
Voorwaardelijke kansen......................................................................................................................10
Partitie.................................................................................................................................................10
Regel van Bayes.................................................................................................................................12
Onafhankelijke kans...........................................................................................................................12
Toevalsveranderlijke...........................................................................................................................13
Kansfunctie f(x) discreet....................................................................................................................13
Cumulatieve Kansfunctie F(x) discreet..............................................................................................14
Berekenen van kansen met een discrete toevalsveranderlijke............................................................14
Kansdichtheidsfunctie f(x) continu....................................................................................................15
Cumulatieve Kansdichtheidsfunctie F(x) continu..............................................................................15
Berekenen van kansen met een continue toevalsveranderlijke..........................................................15
Inverse Cumulatieve Kansdichtheidsfunctie F(x) continu.................................................................16
Verwachtingswaarde E(X) of µ of µx.................................................................................................16
Variatie var(X)....................................................................................................................................16
Standaardafwijking.............................................................................................................................16
Centrale momenten.............................................................................................................................16
Afgeleide v.d. toevalsveranderlijke....................................................................................................17
De Z-score..........................................................................................................................................17
Discrete toevalsveranderlijke.............................................................................................................17
Discrete kansverdelingen....................................................................................................................17
Dichotoom experiment..............................................................................................................18
Soorten dichotome gebeurtenissen............................................................................................18
Binomiale kansverdeling...........................................................................................................19
Matlab...................................................................................................................................19
Wet van de grootte getallen (binominale verdeling)............................................................19
Geometrische kansverdeling.....................................................................................................20
Matlab...................................................................................................................................20
Poisson kansverdeling...............................................................................................................21
Matlab...................................................................................................................................21
Eigenschappen:.....................................................................................................................21
Continue kansverdelingen..................................................................................................................22
Matlab.......................................................................................................................................23
eigenschappen...........................................................................................................................23
De centrale limiet stelling.........................................................................................................24
De voortplantingswet................................................................................................................24
Centrale limietstelling (Benadering aan binomiale verdeling).................................................24
MATLAB..................................................................................................................................25
Veelgebruikte kansen................................................................................................................25
H5 data................................................................................................................................................27
H6 schatten van parameters................................................................................................................29
Wat alsen M is onbekend..........................................................................................................31

1

, Sigma gekend............................................................................................................................32
Sigma niet gekend.....................................................................................................................32
H7 toetsen van hypothese...................................................................................................................35
Bij tweezijdige hypothese.........................................................................................................36
Bij eenzijdig rechts en links......................................................................................................36
Bij tweezijdig............................................................................................................................37
Bij eenzijdig rechts en links......................................................................................................37
Risico van de 1ste soort alpha...................................................................................................38
Risico van de 2de soort beta.....................................................................................................38
Hoe?......................................................................................................................................38
H8 In verband brengen van toevalsveranderlijke variabelen.............................................................39
SS_E..........................................................................................................................................40
Het model..................................................................................................................................40
Matlab.......................................................................................................................................40
SS_Y.........................................................................................................................................41
SS_E..........................................................................................................................................41
SS_R..........................................................................................................................................41
Conclusie SS’en........................................................................................................................41
Steekproef Determinant Coëfficiënt R².....................................................................................41
Steekproef Correlatie Coëfficiënt R..........................................................................................42
Matlab R zoeken.......................................................................................................................42




2

,Kansrekenen
DEF: We bestuderen verschijnselen die afhankelijk zijn van het toeval.
• Aantal studenten die iets koopt in het restaurant
• som van de ogen van 2 dobbelstenen
Het toeval moet aan volgende eigenschappen voldoen:
1. Het moet Herhaalbaar zijn
2. Bij elk experiment mag er maar één resultaat zijn
3. Het resultaat mag niet voorspelbaar zijn, maar er mag wel een vermoeden zijn.
Bij genoeg experimenten kunnen we wel concluderen dat er een “voorspelbaarheid” in zit.


Een gebeurtenis:
Een resultaat van het verschijnsel.


(absolute) frequentie f :
Het totaal aantal experimenten.


Relatieve frequentie fA :
Hoe de gebeurtenis t.o.v. de experimenten in verhouding staat.
mA
f A= 0≤f A≤1
m
m A : aantal keren dat A zich heeft voorgedaan(gebeurtenis)
m: het totaal aantal experimenten


Kans:
Dit is de relatieve frequentie f A wanneer we ∞ experimenten uitvoeren.
kans op A=P[ A]=f A indien m→∞

De kans kunnen we op 2 manieren berekenen.
1. Door meting (Effectief metingen uitvoeren en concluderen uit de genomen
resultaten)(steekproef).
2. Door redenering (Zonder iets te meten, bedenken hoe iets kan verlopen).




3

, Kansmodel:
Dit is een vooropgesteld model waarbij de som van al
de mogelijke uitkomsten (kansen) gelijk moeten zijn aan
1.
P[1]+ P[2]+...=P[W ]=1
Het kansmodel kunnen we op 2 manieren bekomen.
1. Door experimenten (opmeten van frequenties van gebeurtenissen)
2. Door redenering (Bv. Uniform (gelijk verdeeld) kansmodel, ... )


Elementaire gebeurtenis:
Een gebeurtenis met elk element en aparte kans.
Een elementaire gebeurtenis kan op 2 manieren voorkomen:
1. Niet-uniform (ongelijk verdeeld) kansmodel (treed het vaakst op)
2. uniform (gelijk verdeeld) kansmodel of Het kansmodel van Laplace.
1
P[1]=P[2]=...=
nW


Uitkomsten verzameling W:
Alle mogelijke uitkomstenverzamelingen van een toeval verschijnsel.
We noemen dit uitkomstenverzameling of universum W.
Soorten:
• discreet
◦ W bevat:
▪ Eindig aantal gebeurtenissen
▪ Oneindig aantal gebeurtenissen
• continu
◦ W is een interval van reële getallen
Vb. lengte van een persoon




4
5,49 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor
Seller avatar
robels
5,0
(1)

Conoce al vendedor

Seller avatar
robels Universiteit Antwerpen
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
8
Miembro desde
2 año
Número de seguidores
2
Documentos
10
Última venta
3 semanas hace

5,0

1 reseñas

5
1
4
0
3
0
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes