100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Applied Multivariate Data Analysis - Chapter 15

Puntuación
-
Vendido
3
Páginas
30
Subido en
21-01-2022
Escrito en
2021/2022

Summary of Ch. 15 => this chapter was super super long so i am posting it by itself Chapters 16 and 17 will be posted asap!

Institución
Grado














Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
Chapter 15
Subido en
21 de enero de 2022
Número de páginas
30
Escrito en
2021/2022
Tipo
Resumen

Temas

Vista previa del contenido

Week 4: Repeated-Measures
(this chapter was ridiculously long so will post it by itself; chapters 16 and
17 will be posted asap)



Ch 15: Repeated-Measures Designs


Introduction to Repeated-Measures Designs
Between-subject designs => situations in which different entities contribute to different
means

 Different people taking part in different experimental conditions

Repeated-Measures designs – i.e., within-subject designs – situations in which the same
entities contribute to different means

Repeated Measures => when the same entities participate in all conditions of an experiment
– or provide data at multiple time points

 Testing the same people in all conditions of the experiment => allows to control for
individual differences

Repeated-Measures and the Linear Model
Conceptualizing a repeated-measures experiment as a linear model – cannot be done using
the same linear equation as has been used with the previous designs:

Y i=b0 +b1 X 1 i +ɛ i

This linear model => does not account for the fact that the same people took part in all
conditions

 In an independent design => we have one observation for the outcome of each
participant
- Predicting the outcome for the individual based on the value of the predictor for
that person

,With repeated-measures => the participant has several values of the predictor:

 The outcome is predicted from both the individual (i) and the specific value of the
predictor that is of interest (g)
Y gi =b0 +b 1 X g i +ɛ g i

The above equation => acknowledges that we predict the outcome from the predictor (g)
within the person (i) from the specific predictor that has been experienced by the participant (
X g i)

All that has changed is the subscripts in the model – which acknowledge that levels of the
treatment condition (g) occur within individuals (i)

Additionally => want to factor in that naturally there will be individual differences in regards
to the outcome

 We do this by adding a variance term to the intercept (i.e., intercept represents the
value of the outcome, when the predictor = 0)
- By allowing this parameter to vary across individuals => effectively modeling the
possibility that different people will have different responses/reactions (individual
differences)

This is known as a random intercept model – written as:

Y gi =b0 +b 1 X g i +ɛ g i
b 0i =b0 +u 0i

The intercept has had a i added to the subscript => reflecting that it is specific to the
individual

 Underneath => define the intercept as being made up of the group-level intercept ( b 0)
plus the deviation of the individual’s intercept from the group-level intercept (u0 i )
 u0 i => reflects individual differences in the outcome

The first line of the equation => becomes a model for an individual; and the second line =>
the group-level effects

Additionally => factor in the possibility that the effect of different predictors varies across
individuals

,  Add a variance term to the slope (i.e., the slope represents the effect that different
predictors have on the outcome)
- By allowing this parameter to vary across individuals => model the possibility
that the effect of the predictor on the outcome will be different in different
participants

This is known as a random slope model:

Y gi =b0 +b 1 X g i +ɛ g i
b 0i =b0 +u 0i
b 1i=b1 +u1 i

The main change is that the slope (b1) has had an i added to the subscript => reflecting that it
is specific to an individual

 Defined as being made up of the group-level slope (b1) plus the deviation of the
individual’s slope from the group-level slope ( u1 i) => reflecting individual differences
in the effect of the predictor on the outcome

The top of the equation => a model for the individual; and bottom two lines => the group-
level effects

The ANOVA Approach to Repeated-Measures Designs


The Assumption of Sphericity


The assumption that allows the use of a simpler model to analyze repeated-measures data =>
known as sphericity

 It is assuming that the relationship between scores in pairs of treatment conditions is
similar (i.e., the level of dependence between means is roughly equal)

 It is denoted by ε – and referred to as circularity – it can be likened to the assumption
of homogeneity of variance in between-group designs

It is a form of compound symmetry => which holds true when both the variances across
conditions are equal – and the covariances between pairs of conditions are equal

,  Assume that the variation within conditions is similar – and no two conditions are any
more dependent than any other two conditions

Sphericity => a more general, less restrictive form of compound symmetry

- Refers to the equality of variances of the differences between treatment levels

Example: if there were three conditions (A, B, and C)

Sphericity will hold when the variance of the differences between the different conditions is
similar:

variance A− B ≈ variance A −C ≈ varianceB −C

If two of the three group variances are very similar – then these data have local sphericity

- Sphericity can be assumed for any multiple comparisons involving these two
conditions



Assessing the Severity of Departures from Sphericity


Mauchly’s test => assess the hypothesis that the variances of the differences between
conditions are equal

 If significant (i.e., the probability value < .05) => implies that there are significant
differences between the variances
- Sphericity is not met
 If non-significant => the variances of differences are roughly equal and sphericity is
met

However – this test depends on sample size and is best ignored…

A better estimate of the degree of sphericity is the Greenhouse-Geisser estimate (ε^ ) => this
estimate varies between 1/(k – 1)

- Where k is the number of repeated-measures conditions
- E.g., when there are 5 conditions => the lower limit of ε^ will be 1(5 – 1); or 0.25
(i.e., the lower-bound estimate of sphericity)

Or use the Huynh-Feldt estimate (~ε )

, The Effect of Violating the Assumption of Sphericity


Sphericity creates a loss of power and an F-statistic that does not have the distribution it is
supposed to have (i.e., an F-distribution)

Lack of sphericity also causes complications for post hoc tests

When sphericity is violated => use the Bonferroni method as it is most robust in terms of
power and control of Type I error rate

When the assumption is definitely not violated => can use Tukey’s test



Steps to Take when Sphericity is Violated


Adjust the degrees of freedom of any F-statistic affected

Sphericity can be estimated in various of ways => resulting in a value = 1 when the data are
spherical – and a value < 1 when they are not

1. Multiple the degrees of freedom for an affected F-statistic by this estimate
2. The result is that when there is sphericity => the df will not change (as they’re
multiplied by 1)
3. When there is not sphericity => the df will get smaller (as they are multiplied by a
value less than 1)

The greater the violation of sphericity => the smaller the estimate gets => the smaller the
degrees of freedom become

Smaller degrees of freedom => make the p-value associated with the F-statistic less
significant

By adjusting the df – by the extent to which the data are not spherical => the F-statistic
becomes more conservative

 This way => the Type I error is controlled

The df => adjusted using either the Greenhouse-Geisser or Huynh-Feldt estimates of
sphericity

, 1. When the Greenhouse-Geisser estimate > 0.75
- The correction is too conservative => this can be true when the sphericity estimate
is as high as 0.90
2. The Huynh-Feldt estimate => tends to overestimate sphericity

Recommended:

 When estimates of sphericity > 0.75 => use the Huynh-Feldt estimate
 When the Greenhouse-Geisser estimate of sphericity < 0.75 or nothing is known
about sphericity => use the GG correction

Suggested to take an average of the two estimates => and adjusting the df by this average

Another option is to use MANOVA => as it does not assume sphericity

- But there may be trade-offs in power

The F-Statistic for Repeated-Measures Designs
In a repeated-measures design => the effect of the experiment (i.e., the independent variable)
is show up in the Within-Participant variance (=> rather than the between-group variance)

In independent designs => the within-participant variance is the SSR (i.e., the variance
created by individual differences in performance)

When the experimental manipulation is
carried out on the same entities => the
within-participant variance will be
made up of:

(1) The individual differences in
performance
AND
(2) The effect of the manipulation



The main difference with a repeated-measures design => look for the experimental effect
(SSM) within the individual – rather than within the group

, The only difference in sum of squares in repeated-measures => is where those SS come
from:

 In repeated-measures => the model and the residual SS are both part of the within-
participant variance



The Total Sum of Squares, SST


In repeated-measures designs – the SS T is calculated in the same was as for one-way
independent designs

2
SS T =s grand ( N−1)

The grand variance => the variance of all scores when we ignore the group to which they
belong

The df for SST = N – 1



The Within-Participant Sum of Squares, SSW


The crucial difference from an independent design => in a repeated-measures design there is
a within-participant variance component

- i.e., represents individual differences within participants

In independent designs => these individual differences were quantified with the SSR

 Because there are different participants within each condition => SS R within each
condition is calculated – and these values are added to get a total

In a repeated-measures design => different entities are subjected to more than one
experimental condition – and interested in the variation within an entity (not within a
condition)

 Therefore, the same equation is used – but is adapted to look within participants:

SS W =s 2entity1 ( n1−1 ) + s 2entity 2 ( n 2−1 ) +s 2entity 3 ( n3−1 ) + …+ s 2entity n (nn−1)
4,99 €
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
galinajimberry Erasmus Universiteit Rotterdam
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
352
Miembro desde
5 año
Número de seguidores
127
Documentos
8
Última venta
9 meses hace

4,3

16 reseñas

5
7
4
7
3
2
2
0
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes