100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Solution Manual for A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis G. Zill | 2025/2026 Updated Solutions PDF

Rating
-
Sold
-
Pages
664
Grade
A+
Uploaded on
15-12-2025
Written in
2025/2026

Get step-by-step support with this comprehensive Solution Manual for A First Course in Differential Equations with Modeling Applications, 12th Edition by Dennis G. Zill. Updated for 2025/2026, this manual provides clear, fully worked solutions to end-of-chapter problems, helping students master both theory and real-world modeling applications of differential equations. Ideal for mathematics, engineering, science, and applied mathematics students preparing for homework, quizzes, midterms, finals, and modeling-based problem solving. Covers first-order equations, higher-order linear equations, Laplace transforms, systems of differential equations, series solutions, and numerical methods.

Show more Read less
Institution
A First Course In Differential Equations
Course
A First Course in Differential Equations











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
A First Course in Differential Equations
Course
A First Course in Differential Equations

Document information

Uploaded on
December 15, 2025
Number of pages
664
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




Solution and Answer Guide
ZILL, DIFFERENTIAL EQUATIONS WITH MODELING APPLICATIONS 2024,
9780357760192; CHAPTER #1: INTRODUCTION TO DIFFERENTIAL EQUATIONS


TABLE OF CONTENTS
End of Section Solutions ....................................................................................................................................... 1
Exercises 1.1 ......................................................................................................................................................... 1
Exercises 1.2 .......................................................................................................................................................14
Exercises 1.3 .......................................................................................................................................................22
Chapter 1 in Review Solutions ........................................................................................................................ 30




END OF SECTION SOLUTIONS
EXERCISES 1.1
1. Second order; linear
2. Third order; nonlinear because of (dy/dx)4
3. Fourth order; linear
4. Second order; nonlinear because of cos(r + u)

5. Second order; nonlinear because of (dy/dx)2 or 1 + (dy/dx)2
6. Second order; nonlinear because of R2
7. Third order; linear
8. Second order; nonlinear because of ẋ 2
9. First order; nonlinear because of sin (dy/dx)
10. First order; linear
11. Writing the differential equation in the form x(dy/dx) + y2 = 1, we see that it is nonlinear
in y because of y2. However, writing it in the form (y2 — 1)(dx/dy) + x = 0, we see that it is
linear in x.
12. Writing the differential equation in the form u(dv/du) + (1 + u)v = ueu we see that it is
linear in v. However, writing it in the form (v + uv — ueu)(du/dv) + u = 0, we see that it is
nonlinear in u.
13. From y = e−x/2 we obtain yj = — 12 e−x/2. Then 2yj + y = —e−x/2 + e−x/2 = 0.




1

,Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations


6 6 —
14. From y = — e 20t we obtain dy/dt = 24e−20t , so that
5 5
dy 6 6 −20t
+ 20y = 24e−20t + 20 — e = 24.
dt 5 5

15. From y = e3x cos 2x we obtain yj = 3e3x cos 2x—2e3x sin 2x and yjj = 5e3x cos 2x—12e3x sin 2x,
so that yjj — 6yj + 13y = 0.
j
16. From y = — cos x ln(sec x + tan x) we obtain y = —1 + sin x ln(sec x + tan x) and
jj jj
y = tan x + cos x ln(sec x + tan x). Then y + y = tan x.
17. The domain of the function, found by solving x+2 ≥ 0, is [—2, ∞). From yj = 1+2(x+2)−1/2
we have
j −1/2
(y —x)y = (y — x)[1 + (2(x + 2) ]

= y — x + 2(y —x)(x + 2)−1/2

= y — x + 2[x + 4(x + 2)1/2 — x](x + 2)−1/2

= y — x + 8(x + 2)1/2(x + 2)−1/2 = y — x + 8.

An interval of definition for the solution of the differential equation is (—2, ∞) because yj is
not defined at x = —2.
18. Since tan x is not defined for x = π/2 + nπ, n an integer, the domain of y = 5 tan 5x is
{x 5x /= π/2 + nπ}
or {x x /= π/10 + nπ/5}. From y j= 25 sec 25x we have
j
y = 25(1 + tan 2 5x) = 25 + 25 tan2 5x = 25 + y 2 .

An interval of definition for the solution of the differential equation is (—π/10, π/10). An-
other interval is (π/10, 3π/10), and so on.
19. The domain of the function is {x 4 — x2 /= 0} or {x x /= —2 or x /= 2}. From y j =
2x/(4 — x2)2 we have
2
1
yj = 2x = 2xy2.
4 — x2
An interval of definition for the solution of the differential equation is (—2, 2). Other inter-
vals are (—∞, —2) and (2, ∞).

20. The function is y = 1/ 1 — sin x , whose domain is obtained from 1 — sin x /= 0 or sin x /= 1.
Thus, the domain is {x x /= π/2 + 2nπ}. From y j= — (11
2
— sin x) −3/2 (— cos x) we have

2yj = (1 — sin x)−3/2 cos x = [(1 — sin x)−1/2]3 cos x = y3 cos x.

An interval of definition for the solution of the differential equation is (π/2, 5π/2). Another
one is (5π/2, 9π/2), and so on.



2

, Solution and Answer Guide: Zill, DIFFERENTIAL EQUATIONS With MODELING APPLICATIONS 2024, 9780357760192; Chapter #1:
Introduction to Differential Equations




21. Writing ln(2X — 1) — ln(X — 1) = t and differentiating x

implicitly we obtain 4

2 dX 1 dX
— =1 2
2X — 1 dt X — 1 dt
2 1 dX t
— =1 –4 –2 2 4
2X — 1 X — 1 dt
–2
2X — 2 — 2X + 1 dX
=1
(2X — 1) (X — 1) dt
–4
dX
= —(2X — 1)(X — 1) = (X — 1)(1 — 2X).
dt

Exponentiating both sides of the implicit solution we obtain

2X — 1
= et
X —1
2X — 1 = Xet — et

(et — 1) = (et — 2)X
et — 1
X= .
et — 2

Solving et — 2 = 0 we get t = ln 2. Thus, the solution is defined on (—∞, ln 2) or on (ln 2, ∞).
The graph of the solution defined on (—∞, ln 2) is dashed, and the graph of the solution
defined on (ln 2, ∞) is solid.

22. Implicitly differentiating the solution, we obtain y

2 dy dy 4
—2x — 4xy + 2y =0
dx dx
2
—x2 dy — 2xy dx + y dy = 0
x
2xy dx + (x2 — y)dy = 0. –4 –2 2 4

–2
Using the quadratic formula to solve y2 — 2x2y — 1 = 0
√ √
for y, we get y = 2x2 ±
4x4 + 4 /2 = x2 ± x4 + 1 . –4

Thus, two explicit solutions are y1 = x2 + x4 + 1 and

y2 = x2 — x4 + 1 . Both solutions are defined on (—∞, ∞).
The graph of y1(x) is solid and the graph of y2 is dashed.




3

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
smartstudysource Chamberlain College Of Nursing
Follow You need to be logged in order to follow users or courses
Sold
70
Member since
3 months
Number of followers
2
Documents
932
Last sold
1 week ago
The academic vault-a secure source of valuable study materials

your go to go source for high quality study materials and exam resources. Fast, reliable, and designed to help you succeed.

3,3

4 reviews

5
1
4
1
3
1
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions