100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Microeconomics - Mathematics

Rating
-
Sold
1
Pages
5
Uploaded on
04-02-2021
Written in
2018/2019

Brief summary of key formulae and mathematical methods involved in the intermediate microeconomics course at the University of Oxford.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Uploaded on
February 4, 2021
Number of pages
5
Written in
2018/2019
Type
Class notes
Professor(s)
Alex teytelboym
Contains
Microeconomics - mathematics

Subjects

Content preview

1 Mathematics

1.1 Sets and Functions

Definition 1. A consumption set, X, is said to be convex if and only if for every x, y, z 2 X,
where y ⌫ x and z ⌫ x we have for every q 2 [0, 1]

qy + (1 q )z ⌫ x. (1)

The term ‘convex preferences’ refers to the convexity of consumers’ consumption sets.
Convex preferences imply:
1. =) concave utility functions.
2. =) convex indifference curves.
Convex preferences are a fundamental assumption of many economic models.


1.2 Calculus

1.2.1 Di↵erentiation

Definition 2. Implicit differentiation provides a way to differentiate when two variables x
and y are implicitly related through z( x, y) = c.
In the case where z( x, y) = 0, we have:

∂z ∂z
dz = dx + dy = 0. (2)
∂x ∂y

which through rearranging will give us the derivative of y with respect to x:
∂z
dy
= ∂x
. (3)
dx ∂z
∂y



1.2.2 Integration

Definition 3. Integration by parts has the formula
Z Z
f 0 ( x ) g( x )dx = f ( x ) g( x ) f ( x ) g0 ( x )dx. (4)

Definition 4. Integration by substitution has the formula
Z
f 0 ( g( x )) g0 ( x )dx = f ( g( x )) + c. (5)



7

, 1.3 Optimisation

1.3.1 Quasi-concavity

Definition 5. A function f is said to be quasi-concave if for any ( x, x 0 ) where x 6= x 0 and
f ( x ) = f ( x 0 ) we have

f (tx + (1 t) x0 ) > f ( x ) = f ( x0 ) , t 2 (0, 1). (6)

• Critical points on a quasi-concave function are global maxima.


1.3.2 Transformation

Minimisation problems can be converted into maximisation problems by using the fact
that

min f ( x, y) , max f ( x, y). (7)


1.3.3 Multi-variate Optimisation

In order for a critical point ( x0 , y0 ) on f ( x, y) to be a global maximum we need the
first-order conditions to hold:
∂f
1. ∂x ( x0 , y0 ) = 0.
∂f
2. ∂y ( x0 , y0 ) = 0.
However, these conditions are insufficient for maximisation. Further, we need the sec-
ond partial derivatives to be negative for concavity:
∂2 f
1. ∂x2
( x0 , y0 ) < 0.
∂2 f
2. ∂y2
( x0 , y0 ) < 0.
But we need one further condition. Even if these four conditions hold, we might still
find a saddle point rather than a global optimum.




8
R149,56
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
marcuseashby

Document also available in package deal

Get to know the seller

Seller avatar
marcuseashby
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
4 year
Number of followers
1
Documents
2
Last sold
4 year ago

0,0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions