100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4,6 TrustPilot
logo-home
Exam (elaborations)

Mathematical Methods in the Physical Sciences (3rd Edition, 2005) – Solutions Manual – Boas

Rating
-
Sold
-
Pages
72
Grade
A+
Uploaded on
16-11-2025
Written in
2025/2026

Mathematical Methods in the Physical Sciences (3rd Edition, 2005) – Solutions Manual – Boas

Institution
Mathematical Methods In The Physical Science
Course
Mathematical Methods in the Physical Science











Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Mathematical Methods in the Physical Science
Course
Mathematical Methods in the Physical Science

Document information

Uploaded on
November 16, 2025
Number of pages
72
Written in
2025/2026
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

,Chapter 1


1.1 (2/3)10 = 0.0173 yd; 6(2/3)10 = 0.104 yd (compared to a total of 5 yd)
1.3 5/9 1.4 9/11 1.5 7/12
1.6 11/18 1.7 5/27 1.8 25/36
1.9 6/7 1.10 15/26 1.11 19/28
1.13 $1646.99 1.15 Blank area = 1
1.16 At x = 1: 1/(1 + r); at x = 0: r/(1 + r); maximum escape at x = 0 is 1/2.

2.1 1 2.2 1/2 2.3 0
2.4 ∞ 2.5 0 2.6 ∞
2.7 e2 2.8 0 2.9 1

4.1 an = 1/2n → 0; Sn = 1 − 1/2n → 1; Rn = 1/2n → 0
4.2 an = 1/5n−1 → 0; Sn = (5/4)(1 − 1/5n ) → 5/4; Rn = 1/(4 · 5n−1 ) → 0
4.3 an = (−1/2)n−1 → 0; Sn = (2/3)[1 − (−1/2)n ] → 2/3; Rn = (2/3)(−1/2)n → 0
4.4 an = 1/3n → 0; Sn = (1/2)(1 − 1/3n ) → 1/2; Rn = 1/(2 · 3n ) → 0
4.5 an = (3/4)n−1 → 0; Sn = 4[1 − (3/4)n ] → 4; Rn = 4(3/4)n → 0
1 1 1
4.6 an = → 0; Sn = 1 − → 1; Rn = →0
n(n + 1) n+1 n+1
(−1)n+1 (−1)n
 
1 1
4.7 an = (−1)n+1 + → 0 ; Sn = 1 + → 1; Rn = →0
n n+1 n+1 n+1

5.1 D 5.2 Test further 5.3 Test further
5.4 D 5.5 D 5.6 Test further
5.7 Test further 5.8 Test further
5.9 D 5.10 D

6.5 (a) D 6.5 (b) D
R∞
Note: In the following answers, I= an dn; ρ = test ratio.
6.7 D, I = ∞ 6.8 D, I = ∞ 6.9 C, I = 0
6.10 C, I = π/6 6.11 C, I = 0 6.12 C, I = 0
6.13 D, I = ∞ 6.14 D, I = ∞ 6.18 D, ρ = 2
6.19 C, ρ = 3/4 6.20 C, ρ = 0 6.21 D, ρ = 5/4
6.22 C, ρ = 0 6.23 D, ρ = ∞ 6.24 D, ρ = 9/8
6.25 C, ρ = 0 6.26 C, ρ = (e/3)3 6.27 D, ρ =P100
6.28 C, ρ =P 4/27 6.29 D, ρ =P2 6.31 D, cf. P n−1
6.32 D, cf. n−1 6.33 C, cf. 2−n 6.34 C, cf. n−2
P −2 P −1/2
6.35 C, cf. n 6.36 D, cf. n




1

,Chapter 1 2


7.1 C 7.2 D 7.3 C 7.4 C
7.5 C 7.6 D 7.7 C 7.8 C
P −1
9.1 D, cf. n 9.2 D, an 6→ 0 P −1
9.3 C, I =P0 9.4 D, I = ∞, or cf. n
9.5 C, cf. n−2 9.6 C, ρ = 1/4
9.7 D, ρ = 4/3 9.8 C, ρ = 1/5
9.9 D, ρ = e 9.10 D, an 6→
P 0 −2
D, I = ∞, or cf.P n−1
P
9.11 9.12 C, cf. n
9.13 C, I = 0, or cf. n−2 9.14 C, alt.Pser.
9.15 D, ρ = ∞, an 6→ 0 9.16 C, cf. n−2
9.17 C, ρ = 1/27 9.18 C, alt. ser.
9.19 C 9.20 C
9.21 C, ρ = 1/2
9.22 (a) C (b) D (c) k > e

10.1 |x| < √ 1 10.2 |x| < 3/2 10.3 |x| ≤ 1
10.4 |x| ≤ 2 10.5 All x 10.6 All x
10.7 −1 ≤ x < 1 10.8 −1 < x ≤ 1 10.9 |x| < 1
10.10 |x| ≤ 1 10.11 −5 ≤ x < 5 10.12 |x| < 1/2
10.13 −1 < x ≤ 1 10.14 |x| < 3 10.15 −1 < x < 5
10.16 −1 < x < 3 10.17 −2 < x ≤ 0 10.18 −3/4 ≤ x ≤ −1/4
10.19 |x| < 3 10.20 All x 10.21 0 ≤ x √≤1
10.22 No x 10.23 x > 2 or x < −4 10.24 |x| < 5/2
10.25 nπ − π/6 < x < nπ + π/6

(−1)n (2n − 1)!!
   
−1/2 −1/2
13.4 = 1; =
0 n (2n)!!
Answers to part (b), Problems 5 to 19:
∞ n+2 ∞  
X x X 1/2 n+1
13.5 − 13.6 x (see Example 2)
1
n 0
n
∞ ∞ 
(−1)n x2n

X X −1/2
13.7 13.8 (−x2 )n (see Problem 13.4)
0
(2n + 1)! 0
n
∞ ∞
X X (−1)n x4n+2
13.9 1 + 2 xn 13.10
1 0
(2n + 1)!
∞ n n ∞
X (−1) x X (−1)n x4n+1
13.11 13.12
0
(2n + 1)! 0
(2n)!(4n + 1)
∞ n 2n+1 ∞
X (−1) x X x2n+1
13.13 13.14
0
n!(2n + 1) 0
2n + 1

x2n+1

X −1/2 
13.15 (−1)n
0
n 2n + 1
∞ 2n ∞
X x X xn
13.16 13.17 2
0
(2n)! n
oddn

X (−1)n x2n+1 ∞
X −1/2 x2n+1

13.18 13.19
0
(2n + 1)(2n + 1)! 0
n 2n + 1
2 3 5 6
13.20 x + x + x /3 − x /30 − x /90 · · ·
13.21 x2 + 2x4 /3 + 17x6 /45 · · ·
13.22 1 + 2x + 5x2 /2 + 8x3 /3 + 65x4 /24 · · ·
13.23 1 − x + x3 − x4 + x6 · · ·

, Chapter 1 3


13.24 1 + x2 /2! + 5x4 /4! + 61x6 /6! · · ·
13.25 1 − x + x2 /3 − x4 /45 · · ·
13.26 1 + x2 /4 + 7x4 /96 + 139x6 /5760 · · ·
13.27 1 + x + x2 /2 − x4 /8 − x5 /15 · · ·
13.28 x − x2 /2 + x3 /6 − x5 /12 · · ·
13.29 1 + x/2 − 3x2 /8 + 17x3 /48 · · ·
13.30 1 − x + x2 /2 − x3 /2 + 3x4 /8 − 3x5 /8 · · ·
13.31 1 − x2 /2 − x3 /2 − x4 /4 − x5 /24 · · ·
13.32 x + x2 /2 − x3 /6 − x4 /12 · · ·
13.33 1 + x3 /6 + x4 /6 + 19x5 /120 + 19x6 /120 · · ·
13.34 x − x2 + x3 − 13x4 /12 + 5x5 /4 · · ·
13.35 1 + x2 /3! + 7x4 /(3 · 5!) + 31x6 /(3 · 7!) · · ·
13.36 u2 /2 + u4 /12 + u6 /20 · · ·
13.37 −(x2 /2 + x4 /12 + x6 /45 · · · )
13.38 e(1 − x2 /2 + x4 /6 · · · )
4
13.39 1 − (x − π/2)2 /2! + (x − π/2) /4! · · ·
3
13.40 1 − (x − 1) + (x − 1)2 − (x − 1) · · ·
13.41 e [1 + (x − 3) + (x − 3) /2! + (x − 3)3 /3! · · · ]
3 2
2
13.42 −1 + (x − π) /2! − (x − π)4 /4! · · ·
13.43 −[(x − π/2) + (x − π/2)3 /3 + 2(x − π/2)5 /15 · · · ]
13.44 5 + (x − 25)/10 − (x − 25)2 /103 + (x − 25)3 /(5 · 104 ) · · ·

14.6 Error < (1/2)(0.1)2 ÷ (1 − 0.1) < 0.0056
14.7 Error < (3/8)(1/4)2 ÷ (1 − 14 ) = 1/32
14.8 For x < 0, error < (1/64)(1/2)4 < 0.001
For x > 0, error < 0.001 ÷ (1 − 12 ) = 0.002
1
14.9 Term n + 1 is an+1 = (n+1)(n+2) , so Rn = (n + 2)an+1 .
14.10 S4 = 0.3052, error < 0.0021 (cf. S = 1 − ln 2 = 0.307)

15.1 −x4 /24 − x5 /30 · · · ' −3.376 × 10−16
15.2 x8 /3 − 14x12 /45 · · · ' 1.433 × 10−16
15.3 x5 /15 − 2x7 /45 · · · ' 6.667 × 10−17
15.4 x3 /3 + 5x4 /6 · · · ' 1.430 × 10−11
15.5 0 15.6 12 15.7 10!
15.8 1/2 15.9 −1/6 15.10 −1
15.11 4 15.12 1/3 15.13 −1
15.14 t − t3 /3, error < 10−6 15.15 23 t3/2 − 52 t5/2 , error < 17 10−7
15.16 e2 − 1 15.17 √cos π2 = 0
15.18 ln 2 15.19 2
15.20 (a) 1/8 (b) 5e (c) 9/4
15.21 (a) 0.397117 (b) 0.937548 (c) 1.291286
15.22 (a) π 4 /90 (b) 1.202057 (c) 2.612375
15.23 (a) 1/2 (b) 1/6 (c) 1/3 (d) −1/2
15.24 (a) −π (b) 0 (c) −1
(d) 0 (e) 0 (f) 0
15.27 (a) 1 − vc = 1.3 × 10−5 , or v = 0.999987c
(b) 1 − vc = 5.2 × 10−7
(c) 1 − vc = 2.1 × 10−10
(d) 1 − vc = 1.3 × 10−11
15.28 mc2 + 21 mv 2
15.29 (a) F/W = θ + θ3 /3 · · ·
(b) F/W = x/l + x3 /(2l3 ) + 3x5 /(8l5 ) · · ·
R194,59
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
Rightscore

Get to know the seller

Seller avatar
Rightscore Teachme2-tutor
Follow You need to be logged in order to follow users or courses
Sold
7
Member since
2 months
Number of followers
0
Documents
244
Last sold
6 days ago
TESTBANKS AND SOLUTION MANUALS

your go-to source for high-quality test banks and study materials designed to help you excel academically. All the materials posted are A+ Graded. Please rate and write a review after using my materials. Your reviews will motivate me to add more materials.

0,0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions