100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4,6 TrustPilot
logo-home
Summary

Summary: Research Methonds in SCM

Rating
-
Sold
-
Pages
18
Uploaded on
13-10-2025
Written in
2025/2026

This summary contains: - all relevant college notes - all required research papers For the course: Research Methods in SCM For the master: Supply Chain Management

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
October 13, 2025
Number of pages
18
Written in
2025/2026
Type
Summary

Subjects

Content preview

Introduction to research design:

Quantitative research = research approach that examines concepts in terms of
amount, intensity, or frequency

Qualitative research = research approach that examines concepts in terms of
their meaning and interpretation in specific contexts on inquiry

Two ways of performing qualitative research:
1. Variance theory
= explaining strategic change with a variance model
(explains outcomes by focusing on how different levels of independent variables
relate to variations in a dependent variable)
2. Process theory
= explaining strategic change with a process model
(explains how an entity changes and develops by focusing on the sequence of
events and activities over time)

Forms of reasoning:
1. Abduction: inference to a cause/case
-> used to frame problems and generate solutions/theories
(Example: that cyclist must have a flat tire)
2. Deduction: inference to a result
-> used for testing solutions/theories
(Example: the cyclist is fixing the problem / repairing his bike)
3. Induction: inference to a rule
-> involves generalizing from a sample to a population
(Example: on average, cyclists doing similar actions by the side of the road are
likely repairing their bicycles)

We predict, confirm, and disconfirm through deduction, generalize through
induction, and theorize through abduction
Abduce a conjecture -> deduce a consequence -> induce a rule

Lecture 1:

The process of building theory:
1. Observe, describe & measure the phenomena (Constructs)
2. Categorization based upon attributes of phenomena (Frameworks &
Typologies)
3. Statements of association (Models)

Deductive process: 3 -> 1 (using a model to predict the phenomena)
Inductive process: 1 -> 3 (using the phenomena to create a model)

Lecture 2:

Internal validity -> given that there is a relationship, is the relationship a causal
one?
* Speaks to the validity of the research itself

,* Selection bias, and alternative explanations can threaten internal validity

Construct validity -> how well did you translate your construct into a
functioning and operating reality
External validity -> if causal relationships exist, how generalizable is this
relationship

The key assumptions of linear regression:
1. Linearity (a linear relationship between X and Y)
-> if nonlinear, you need to transform the variable to make it linear
2. Homoscedasticity (an equal variance)
3. Normality of Errors (normality of error distribution)
4. Independence of Errors (independence of observations, includes ‘no
autocorrelation’)
5. No Multicollinearity (predictors are not correlated with each other)
-> calculate the VIF (variance influation factor), if the value is less than 10, there
is no multicollinearity
6. No endogeneity (no correlations between predictors and errors)

Linear Regression
= specifies the conditional mean of a response variable ‘y’ as a linear function of
‘k’ independent variables

Simple linear regression -> one independent variable
Multiple linear regression -> multiple independent variables

Standard error = estimates the sampling distribution of the coefficient in the
population

Lecture 3:

Potential outcome model
= defines causal effects by comparing what would have happened to an
individual under treatment versus no treatment, even though only one outcome
can be observed for any given individual

Experiments:

Types of experiments:
1. Laboratory experiments
▪ usually controlled and incentivized
▪ imposed set of rules -> internal validity
▪ standard subject pool
▪ abstract framing
2. Field experiments
▪ artefactual (uses a non-standard subject pool)
▪ framed: provides a specific framing, or context
▪ natural: environment is one in which subjects naturally undertake tasks and
where subjects do now know they are in an experiments
▪ focus: external validity

, 3. Stated Preference experiments
▪ hypothetical choices
▪ conjoint analysis

Why do we use experiments?
1. Self-serving bias of people / people are not always aware of our own mistakes
2. Secondary data is inferior to experiments

Focus variables = the effect of the variables in which you are interested
Nuisance variables = are of no direct interest but may effect results
Confounding = the effect of two or more variables

Full factorial design = designing an experiment where all combinations of
variables are tested, a treatment is conducted for each combination
-> this provides the cleanest evidence for the effect of each variable, but can get
quite expensive if there are many variables

Between-subject design = independent group of participants in each
treatment
Within-subject design = the same subject experiences more than one
treatment
+ multiple observations per participant
+ stronger statistical or paired tests
- order effects
-> solution for this is to randomize the order of treatments

Stated Preference experiments
= a data collection method to examine the trade-offs people make when making
a choice
▪ hypothetical alternatives are constructed and presented to respondents
-> respondents are either asked to give a rating to various options or to pick their
preferred option
The estimation of the utility function depends on what type of response type is
used in the experiment
1. Ratings: Regression
▪ rating should be an internal level measurement
▪ DV: ratings of hypotherital alternatives
▪ IV: coded attribute levels
2. Choices: Multinomial-logit model (MNL)
▪ DV: 1 (alternative was chosen) or 0 (alternative was not chosen)
▪ IV: coded attribute levels
-> choice-based models are the preferred academic standard

Three different measurement tasks are generally distinguished:
1. Choice tasks
2. Rating tasks
3. Ranking tasks

Secondary data and archival research:
R117,13
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Document also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
joesvanderstok Tilburg University
Follow You need to be logged in order to follow users or courses
Sold
136
Member since
2 year
Number of followers
37
Documents
32
Last sold
5 days ago

4,1

10 reviews

5
3
4
5
3
2
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions