Assignment 3
Due 24 July 2025
,MAT3705 Assignment 3
Due Date: 24 July 2025
Problem 1
Problem Statement:
z+1
Let f (z) = z2
and let C = {4eiθ : 0 ≤ θ ≤ π}. Calculate the contour integral
Z
z+1
dz
C z2
using Theorem 5.2.4, which refers to the definition of a contour integral.
Step 1: Parametrize the contour
We are given a semicircular contour: z(θ) = 4eiθ , for 0 ≤ θ ≤ π.
Then,
d
dz = (4eiθ ) dθ = 4ieiθ dθ
dθ
Step 2: Write f (z) in terms of θ
Substitute z = 4eiθ into f (z):
4eiθ + 1 4eiθ + 1
f (z(θ)) = =
(4eiθ )2 16e2iθ
So the integral becomes:
π
4eiθ + 1
Z
2iθ
· 4ieiθ dθ
0 16e
Step 3: Simplify the integrand
Simplify:
(4eiθ + 1)(4ieiθ ) 16ie2iθ + 4ieiθ i
2iθ
= 2iθ
= i + iθ
16e 16e 4e
1
, Step 4: Integrate term by term
Z π Z π Z π
i i
i + iθ dθ = i dθ + iθ
dθ
0 4e 0 0 4e
First integral: Z π
i dθ = iπ
0
Second integral:
π π −iθ π
i e−iπ − 1 i −2
Z Z
i i −iθ i e i 2 1
iθ
dθ = e dθ = · = · = · = · =
0 4e 4 0 4 −i 0 4 −i 4 −i 4 i 2
Final Answer:
Z
z+1 1
2
dz = iπ +
C z 2
2