Assignment 3
Due 24 July 2025
, MAT3705 Assignment 3
Due Date: 24 July 2025
Question 1
Problem Statement
z+1
R
Let f (z) = z2
, and let C = {4eiθ : 0 ≤ θ ≤ π}. Compute C
f (z) dz using the definition
of the contour integral (Theorem 5.2.4).
Step 1: Parametrization
Define z(θ) = 4eiθ , 0 ≤ θ ≤ π. Then
d
dz = (4eiθ )dθ = 4ieiθ dθ.
dθ
Step 2: Express the integrand
Substitute z = 4eiθ into f (z):
z+1 4eiθ + 1
f (z) = = .
z2 16e2iθ
Thus,
4eiθ + 1 iθ i(4eiθ + 1)
f (z) dz = · 4ie dθ = dθ.
16e2iθ 4eiθ
Simplify:
i(4eiθ + 1) i
iθ
= i + e−iθ .
4e 4
Step 3: Evaluate the integral
Z Z π Z π Z π
i −iθ i −iθ
f (z) dz = i+ e dθ = i dθ + e dθ.
C 0 4 0 0 4
First term: Z π
i dθ = iπ.
0
1
, Second term: Z π Z π
i −iθ i
e dθ = e−iθ dθ.
0 4 4 0
Compute:
π π
e−iθ
−1 −iπ −1
Z
−iθ 2
e dθ = = (e − 1) = (−2) = = −2i.
0 −i 0 i i i
Thus,
i −2i2 2 1
· (−2i) = = = .
4 4 4 2
Step 4: Final Result
Z
z+1 1
2
dz = iπ + .
C z 2
2