100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Exam (elaborations)

Trigonometry: A Unit Circle Approach 12th Edition – Solutions Manual (Michael Sullivan, 9780138234720) | Complete Answer Key

Rating
-
Sold
-
Pages
927
Grade
A+
Uploaded on
18-06-2025
Written in
2024/2025

Solutions Manual for Trigonometry: A Unit Circle Approach, 12th Edition | Trigonometry, Twelfth Edition Solutions Manual | Michael Sullivan, 9780138234720, Solutions for Trigonometry | Solutions Manual Trigonometry (1th Edition) by Michael Sullivan | Trigonometry: A Unit Circle Approach (12th ed.). This solutions manual provides detailed, step-by-step answers to all exercises in Trigonometry: A Unit Circle Approach (12th Edition) by Michael Sullivan. It includes solutions to both odd- and even-numbered problems, covering key topics such as circular functions, identities, graphs, inverse trigonometric functions, and real-world applications.

Show more Read less
Institution
Trigonometry
Course
Trigonometry











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Trigonometry
Course
Trigonometry

Document information

Uploaded on
June 18, 2025
Number of pages
927
Written in
2024/2025
Type
Exam (elaborations)
Contains
Questions & answers

Subjects

Content preview

SOLUTIONS MANUAL

TRIGONOMETRY: A UNIT CIRCLE APPROACH
12TH EDITION


CHAPTER 1. GRAPHS AND FUNCTIONS
Section 1.1 (f) Quadrant IV

1. 0

2. 5   3  8  8

3. 32  42  25  5

4. 112  602  121  3600  3721  612
Since the sum of the squares of two of the sides
of the triangle equals the square of the third side,
the triangle is a right triangle.

1 16. (a) Quadrant I
5. bh
2 (b) Quadrant III
(c) Quadrant II
6. true (d) Quadrant I
7. x-coordinate or abscissa; y-coordinate or (e) y-axis
ordinate (f) x-axis

8. quadrants
9. midpoint
10. False; the distance between two points is never
negative.
11. False; points that lie in Quadrant IV will have a
positive x-coordinate and a negative y-coordinate.
The point  1, 4  lies in Quadrant II.

17. The points will be on a vertical line that is two
 x  x y  y2 
12. True; M   1 2 , 1 units to the right of the y-axis.
 2 2 

13. b
14. a
15. (a) Quadrant II
(b) x-axis
(c) Quadrant III
(d) Quadrant I
(e) y-axis

,18. The points will be on a horizontal line that is
three units above the x-axis. 28. d ( P1 , P2 )   6  ( 4) 2   2  (3) 2
 102  52  100  25
 125  5 5

29. d ( P1 , P2 )   2.3  (0.2) 2  1.1  (0.3) 2
 2.52  0.82  6.25  0.64
 6.89  2.62

30. d ( P1 , P2 )   0.3  1.2 2  1.1  2.32
19. d ( P1 , P2 )  (2  0) 2  (1  0) 2  (1.5) 2  (1.2) 2  2.25  1.44

 22  12  4  1  5  3.69  1.92


20. d ( P1 , P2 )  (2  0) 2  (1  0) 2 31. d ( P1 , P2 )  (0  a) 2  (0  b) 2

 (2) 2  12  4  1  5  (  a ) 2  ( b ) 2  a 2  b 2


21. d ( P1 , P2 )  (2  1) 2  (2  1) 2 32. d ( P1 , P2 )  (0  a ) 2  (0  a) 2

 (3) 2  12  9  1  10  (a )2  (a )2
 a 2  a 2  2a 2  a 2
22. d ( P1 , P2 )   2  (1)  2
 (2  1) 2

33. A  (2,5), B  (1,3), C  (1, 0)
 32  12  9  1  10
d ( A, B )  1  (2) 2  (3  5)2
23. d ( P1 , P2 )  (5  3) 2   4   4  
2
 32  (2) 2  9  4  13
 22   8   4  64  68  2 17  1  12  (0  3)2
2
d ( B, C ) 

 (2) 2  (3)2  4  9  13
 2   1    4  0 
2 2
24. d ( P1 , P2 ) 
d ( A, C )   1  (2) 2  (0  5)2
  3 2
 4  9  16  25  5
2

 12  (5) 2  1  25  26

25. d ( P1 , P2 )   4  (7) 2  (0  3)2
 112  ( 3) 2  121  9  130


26. d ( P1 , P2 )   4  2 2   2  (3) 2
 22  52  4  25  29

27. d ( P1 , P2 )  (6  5) 2  1  (2) 
2


 12  32  1  9  10

, Verifying that ∆ ABC is a right triangle by the  d ( A, B)2   d ( B, C )2   d ( A, C )2
Pythagorean Theorem:
10 2   10 2 
2 2
 d ( A, B)2   d ( B, C )2   d ( A, C )2   20 
2



 13    13     200  200  400
2 2 2
26
400  400
13  13  26 1
26  26 The area of a triangle is A  bh . In this
2
1 problem,
The area of a triangle is A   bh . In this
2
A    d ( A, B )    d ( B, C ) 
1
problem, 2
A  1   d ( A, B)    d ( B, C )  1
 10 2 10 2
2 2
 1  13  13  1 13 1
 100  2  100 square units
2 2 2
13
 2 square units
35. A  ( 5,3), B  (6, 0), C  (5,5)

34. A  (2, 5), B  (12, 3), C  (10,  11) d ( A, B)   6  ( 5) 2  (0  3)2
d ( A, B )  12  (2) 2  (3  5)2  112  ( 3) 2  121  9

 142  (2) 2  130

 196  4  200 d ( B, C )   5  6 2  (5  0)2
 10 2  (1) 2  52  1  25
d ( B, C )  10  12 2  (11  3)2  26

 (2)  (14)
2 2
d ( A, C )   5  ( 5) 2  (5  3)2
 4  196  200  102  22  100  4
 10 2  104
d ( A, C )  10  (2)  2
 (11  5) 2
 2 26

 122  (16) 2
 144  256  400
 20




Verifying that ∆ ABC is a right triangle by the
Pythagorean Theorem:




Verifying that ∆ ABC is a right triangle by the
Pythagorean Theorem:

,  d ( A, C )2   d ( B, C )2   d ( A, B)2  d ( A, C )2   d ( B, C )2   d ( A, B)2
         2   
2 2 2 2 2 2
104 26 130 29 29 145
104  26  130 29  4  29  145
130  130 29  116  145
1
The area of a triangle is A  bh . In this 145  145
2 1
problem, The area of a triangle is A  bh . In this
2
A    d ( A, C )    d ( B, C ) 
1 problem,
2
A    d ( A, C )    d ( B, C ) 
1
1
  104  26 2
2 1
1   29  2 29
  2 26  26 2
2 1
1   2  29
  2  26 2
2  29 square units
 26 square units
37. A  (4, 3), B  (0, 3), C  (4, 2)
36. A  (6, 3), B  (3, 5), C  (1, 5)
d ( A, B)  (0  4) 2   3  (3) 
2

d ( A, B)   3  (6)  2
 (5  3) 2

 ( 4)2  02  16  0
 92  (8) 2  81  64
 16
 145
4
d ( B, C )   1  32  (5  (5))2 d ( B, C )   4  0 2   2  (3) 2
 (4) 2  102  16  100
 42  52  16  25
 116  2 29
 41
d ( A, C )   1  ( 6)  2
 (5  3) 2
d ( A, C )  (4  4) 2   2  (3) 
2


 52  22  25  4
 02  52  0  25
 29
 25
5




Verifying that ∆ ABC is a right triangle by the
Pythagorean Theorem:
Verifying that ∆ ABC is a right triangle by the
Pythagorean Theorem:

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
docusity Nyc Uni
Follow You need to be logged in order to follow users or courses
Sold
1212
Member since
2 year
Number of followers
135
Documents
1318
Last sold
15 hours ago

4,5

189 reviews

5
135
4
29
3
16
2
1
1
8

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions