Unit - 1
q = ne Quantization of charges
F = (1 / (4 * π * ε₀)) * (q₁q₂ / r²) Couloumb force
εₘ = ε₀*εᵣ Permitivity of medium
Fₘ = Fv / εᵣ
E=F/q Electric field
E = (1 / (4 * π * ε₀)) * (q / r²) Electric field
p⃗ = 2aq Dipole
Eaxial = (1 / (4 * π * ε₀)) * (2p / r³) p̂ Axial point
Eeq = -(1 / (4 * π * ε₀)) * (p / r³) p̂ Equatorial point
Eaxial = 2 * Eeq
τ = pE sinθ Torque
ϕ = EA cosθ Electric flux
ϕ = q / ε₀ Gauss theorem
λ=q/l Linear charge density
σ=q/A Surface charge density
ρ=q/V Volume charge density
E = λ / (2 * π * ε₀ * r) = 2kλ / r Infinitely charged long wire
E = σ / (2ε₀) Infinite plane sheet
E = (1 / (4 * π * ε₀)) * (q / r²) Spherical shell
E = σ/ε₀ On surface of sphere
E = (σR²) / (ε₀r²) For outside
E=0 Inside the shell
Constants and VALUES:
ε₀ = 8.85 × 10⁻¹² C²/N·m²
1 / (4 * π * ε₀) = 9 × 10⁹ N·m²/C²
q = ne Quantization of charges
F = (1 / (4 * π * ε₀)) * (q₁q₂ / r²) Couloumb force
εₘ = ε₀*εᵣ Permitivity of medium
Fₘ = Fv / εᵣ
E=F/q Electric field
E = (1 / (4 * π * ε₀)) * (q / r²) Electric field
p⃗ = 2aq Dipole
Eaxial = (1 / (4 * π * ε₀)) * (2p / r³) p̂ Axial point
Eeq = -(1 / (4 * π * ε₀)) * (p / r³) p̂ Equatorial point
Eaxial = 2 * Eeq
τ = pE sinθ Torque
ϕ = EA cosθ Electric flux
ϕ = q / ε₀ Gauss theorem
λ=q/l Linear charge density
σ=q/A Surface charge density
ρ=q/V Volume charge density
E = λ / (2 * π * ε₀ * r) = 2kλ / r Infinitely charged long wire
E = σ / (2ε₀) Infinite plane sheet
E = (1 / (4 * π * ε₀)) * (q / r²) Spherical shell
E = σ/ε₀ On surface of sphere
E = (σR²) / (ε₀r²) For outside
E=0 Inside the shell
Constants and VALUES:
ε₀ = 8.85 × 10⁻¹² C²/N·m²
1 / (4 * π * ε₀) = 9 × 10⁹ N·m²/C²