EditionbyJohnB.Fraleighg
All ChaptersFullComplete
g
, CONTENTS
1. Sets and Relations 1
g g g
I. Groups and Subgroups
2. Introduction and Examples 4 g g g
3. Binary Operations 7 g
4. Isomorphic Binary Structures 9 g
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21 g
8. Generators and Cayley Digraphs 24 gg g gg g
II. Permutations, Cosets, and Direct Products g g g g
9. Groups of Permutations 26
g g g
10. Orbits, Cycles, and the Alternating Groups g g g g g g
30
11. Cosets and the Theorem of Lagrange
gg 34
g gg g g g
12. Direct Products and Finitely Generated Abelian Groups 37
13. Plane Isometries 42
g g g
III. Homomorphisms and Factor Groups
14. Homomorphisms 44
15. Factor Groups 49
g g
16. Factor-Group Computations and Simple Groups
g g g g g g 53
17. Group Action on a Set 58
g g g g g
18. Applications of G-Sets to Counting 61 g g g g
IV. Rings and Fields
19. Rings and Fields 63
g g
20. Integral Domains 68 g g
21. Fermat’s and Euler’s Theorems
g g 72 g g g g
22. The Field of Quotients of an Integral Domain
g g g g g g g g g g g g g g 74
23. Rings of Polynomials 76
g g g g g
24. Factorization of Polynomials over a Field 79 g g g g g
25. Noncommutative Examples 85 g
26. Ordered Rings and Fields g g 87 g g g g
V. Ideals and Factor Rings
27. Homomorphisms and Factor Rings g g g g 89
28. Prime and Maximal Ideals 94
g g g
,29. Gröbne r Bases for Ideals 99
g g g g
, VI. Extension Fields
30. Introduction to Extension Fields 103 g g g gg
31. Vector Spaces 107 g
32. Algebraic Extensions 111 gg
33. Geometric Constructions 115 g
34. Finite Fields 116
gg gg
VII. Advanced Group Theory g g
35. Isomorphism Theorems 117 g
36. Series of Groups 119
g g g g
37. Sylow Theorems 122
g gg
38. Applications of the Sylow Theory g g g g g g g g 124
39. Free Abelian Groups 128
g g g g g
40. Free Groups 130
g
41. Group Presentations 133
g gg
VIII. Groups in Topology
42. Simplicial Complexes and Homology Groups
g g 136 g g g g g g
43. Computations of Homology Groups 138 g g g g
44. More Homology Computations and Applications 140
g g g g g
45. Homological Algebra 144 g
IX. Factorization
46. Unique Factorization Domains 148
g g g g
47. Euclidean Domains 151 g
48. Gaussian Integers and Multiplicative Norms
g g g g g g g g 154
X. Automorphisms and Galois Theory
49. Automorphisms of Fields 159 g g
50. The Isomorphism Extension Theorem
g g g g 164
51. Splitting Fields 165 gg
52. Separable Extensions 167 g
53. Totally Inseparable Extensions 171
g g
54. Galois Theory 173
55. Illustrations of Galois Theory 176 g g g
56. CyclotomicExtensions 183
57. Insolvability of the Quintic 185 g g g g g
APPENDIX Matrix Algebra 187
iv