Exam (elaborations)
MAT1514 Assignment 1 Semester 1 | Due April 2025
· Course
· Precalculus (MAT1514)
· Institution
· University Of South Africa (Unisa)
· Book
· Calculus
Given functions:
2
f ( x )=3 x −4 x+7
2
g ( x )=x +1
1. (g ∘ f)(x) [4 marks]
This means we substitute f ( x ) into g ( x ):
( g ∘ f ) ( x ) =g ( f ( x ) )=g ( 3 x 2 − 4 x +7 )
Since g ( x )=x 2+1 , we replace x with f ( x ) :
2
g ( f ( x ) )= ( 3 x − 4 x+ 7 ) +1
2
Expanding:
2
( 3 x 2 − 4 x +7 ) =9 x 4 −24 x 3 +49 x 2 − 56 x+ 49
Thus:
, g ( f ( x ) )=9 x − 24 x + 49 x −56 x +50
4 3 2
2. (g − f)(x) [2 marks]
( g − f ) ( x ) =g ( x ) − f ( x )
Substituting:
( x 2 +1 ) − ( 3 x 2 − 4 x +7 )
2 2
x + 1− 3 x +4 x −7
2
−2 x + 4 x −6
3. g f(x) [4 marks]
This represents the product of g ( x ) and f ( x ) :
g ( x ) f ( x ) =( x 2+1 ) ( 3 x 2 − 4 x +7 )
Expanding:
4 3 2 2
3 x −4 x +7 x +3 x − 4 x +7
4 3 2
3 x −4 x +10 x − 4 x +7
4. g− 1 ( x ) [3 marks]
To find the inverse function g− 1 ( x ), we set y=g ( x ):
2
y=x +1
Solving for x :
2
x = y −1
x=± √ y − 1
Thus, the inverse function is:
g ( x )=± √ x −1
−1
MAT1514 Assignment 1 Semester 1 | Due April 2025
· Course
· Precalculus (MAT1514)
· Institution
· University Of South Africa (Unisa)
· Book
· Calculus
Given functions:
2
f ( x )=3 x −4 x+7
2
g ( x )=x +1
1. (g ∘ f)(x) [4 marks]
This means we substitute f ( x ) into g ( x ):
( g ∘ f ) ( x ) =g ( f ( x ) )=g ( 3 x 2 − 4 x +7 )
Since g ( x )=x 2+1 , we replace x with f ( x ) :
2
g ( f ( x ) )= ( 3 x − 4 x+ 7 ) +1
2
Expanding:
2
( 3 x 2 − 4 x +7 ) =9 x 4 −24 x 3 +49 x 2 − 56 x+ 49
Thus:
, g ( f ( x ) )=9 x − 24 x + 49 x −56 x +50
4 3 2
2. (g − f)(x) [2 marks]
( g − f ) ( x ) =g ( x ) − f ( x )
Substituting:
( x 2 +1 ) − ( 3 x 2 − 4 x +7 )
2 2
x + 1− 3 x +4 x −7
2
−2 x + 4 x −6
3. g f(x) [4 marks]
This represents the product of g ( x ) and f ( x ) :
g ( x ) f ( x ) =( x 2+1 ) ( 3 x 2 − 4 x +7 )
Expanding:
4 3 2 2
3 x −4 x +7 x +3 x − 4 x +7
4 3 2
3 x −4 x +10 x − 4 x +7
4. g− 1 ( x ) [3 marks]
To find the inverse function g− 1 ( x ), we set y=g ( x ):
2
y=x +1
Solving for x :
2
x = y −1
x=± √ y − 1
Thus, the inverse function is:
g ( x )=± √ x −1
−1