We are given 𝑓 ( 𝑥 )
2 𝑥 + 15 f(x)=2x+15, but 𝑔 ( 𝑥 ) g(x) is not clearly defined. If you provide 𝑔 ( 𝑥 ) g(x), I
can complete the solution.
1.2 Solve for 𝑥 x 2 𝑒 − 𝑥 − 1
0 2e −x −1=0 Add 1 to both sides: 2 𝑒 − 𝑥
1 2e −x =1 Divide by 2: 𝑒 − 𝑥
1 2 e −x
21
Take the natural logarithm on both sides: − 𝑥
ln 1 2 −x=ln 2 1
, Since ln 1 2
− ln 2 ln 2 1 =−ln2, we get: 𝑥
ln 2 x=ln2 1.3 Solve for 𝑥 x ln 𝑒 𝑥 + ln 5
ln 25 lne x +ln5=ln25 Using ln 𝑒 𝑥
𝑥 lne x =x, rewrite: 𝑥 + ln 5
ln 25 x+ln5=ln25 Since ln 25
ln 5 2
2 ln 5 ln25=ln5 2 =2ln5, we get: 𝑥 + ln 5
2 ln 5 x+ln5=2ln5 Solve for 𝑥 x: 𝑥
ln 5 x=ln5 1.4 Solve for 𝑥 x log 8 + log ( 7 − 4 𝑥 )
log 5 log8+log(7−4x)=log5 Use log 𝐴 + log 𝐵
log ( 𝐴 ⋅ 𝐵 ) logA+logB=log(A⋅B): log [ 8 ( 7 − 4 𝑥 ) ]
log 5 log[8(7−4x)]=log5 Cancel logs: 8 ( 7 − 4 𝑥 )
5 8(7−4x)=5 Expand: 56 − 32 𝑥