100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

samenvatting 2024 Conceptuele Natuurkunde met technische toepassingen HIR(B)

Rating
5,0
(2)
Sold
18
Pages
49
Uploaded on
19-12-2024
Written in
2024/2025

Volledige samenvatting Conceptuele Natuurkunde met technische toepassingen. Samengevat adhv slides en aangevuld uit het boek. Theorie (hoorcolleges) gegeven door Christian Maes.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 19, 2024
Number of pages
49
Written in
2024/2025
Type
Summary

Subjects

Content preview

CONCEPTUELE NATUURKUNDE
HOOFDSTUK 1: INDLEIDING, METEN en SCHATTEN
Fysische basisgrootheden: Grootheid Eenheid Symbool Dimensie
Tijd Seconde s T
Fysische grootheid Lengte Meter m L
= maatgetal x eenheid Massa Kilogram kg M
Hoeveelheid materie Mol mol l
Temperatuur Kelvin K q
Elektrische stroomsterkte Ampère A J
Lichtsterkte Candela cd N
Scalaire en vectoriële grootheden:
Scalaire grootheid
= maatgetal + eenheid
(bv temperatuur, massa, tijd, …)
Vectoriële grootheid = grootte (maatgetal + eenheid) richting (bv snelheid, kracht, …)
- projecties en vectorcomponenten
- som en verschil van vectoren
- inwendig (scalair) product en uitwendig (vectorieel) product
- moment van een vector


Beweging:

→ Translatie + rotatie
▪ Ruimte:
• langs rechte lijn (1D)
• in vlak (2D)
• in de ruimte (3D)
▪ aantal deeltjes:
• van 1 deeltje: punt
• van meerdere deeltjes / een voorwerp
Mechanica:
= studie van de beweging
➔ kinematica = hoe bewegen voorwerpen
= beschrijving van de beweging van een object zonder de oorzaak van het verloop van de beweging in de
beschrijving op te nemen
o positie - Van een “puntmassa”
o snelheid - Van een “voorwerp” / “combinatie van voorwerpen”
o versnelling - Van een “stelsel van deeltjes
▪ Welke baan?
▪ Hoe verloopt de snelheid?
➔ dynamica = waarom bewegen voorwerpen
= studie van het verband tussen krachten en het verloop van een beweging
o bv krachten en versnelling (de wetten van Newton)
▪ Waarom versnelt/ vertraagt een voorwerp?
▪ Waarom is de baan krom?
▪ Waarom verandert de rotatiesnelheid van een voorwerp?




1

,HOOFDSTUK 2: BEWEGING BESCHRIJVEN: KINEMATICA IN 1 DIMENSIE
2.1 REFERENTIESTELSELS EN VERPLAATSING
Metingen t.o.v. referentiestelsel → assenstelsel met oorsprong
➔ Plaats: coördinaten (x,y)
➔ Verplaatsing:
o Grootte en richting
o Vectoriële grootheid
o ≠ (totaal) afgelegde afstand (= scalair  verplaatsing = vector)
2.2 GEMIDDELDE SNELHEID (1D)
Gemiddelde snelheid = afgelegde afstand / verstreken tijd (enkel grootte scalar)
Gemiddelde vectoriële snelheid = verplaatsing / verstreken tijd (grootte & richting vector)

Gemiddelde snelheidsvector (1D): - dimensie: [L]/[T]
- eenheid: m/s
2.3 MOMENTANE SNELHEID (1D)
Momentane snelheid = gemiddelde snelheid over infinitesimaal kort tijdsinterval (scalar)
(= ogenblikkelijke snelheid)
Momentane snelheidsvector (1D): - dimensie: [L]/[T] (vector)
- eenheid: m/s
Snelheid van afgelegde afstand (gemiddeld & momentaan) = “speed”
- Grootte
- Scalaire grootheid
Snelheidsvector, vectoriële snelheid van van verplaatsing (gemiddeld & momentaan) = “velocity”
- Grootte en richting van belang
- Vectoriële grootheid
Tijd-plaats-grafiek:
Gemiddelde vectoriële snelheid = = richtingscoëfficiënt van punt P(t1, x1) naar Q(t2,x2) in t-x-grafiek

Momentane snelheid op tijd t1 = = richtingscoëfficiënt van raaklijk aan x-tgrafiek in punt P(t1, x1)

2.4 VERSNELLING (1D)
= hoe snel verandert de snelheid van een voorwerp
Gemiddelde versnellingsvector = verandering van snelheidsvector / verstreken tijd (grootte & richting vector)

=

Momentane versnelling (1D) = “versnelling” = (vector)
- dimensie: [L]/[T]²
- eenheid: m/s²
Tijd-snelheid-grafiek:
Versnelling = a =

Gemiddelde versnelling = helling van de rechte tussen de punten (t1, v1) en (t2, v2)
Momentane versnelling = helling van de raaklijn aan de tijd-snelheid-grafiek in het punt (t1, v1)
2.5 BEWEGING MET CONSTANTE VERSNELLING
Rechtlijnige beweging = beweging langs een rechte lijn
Eenparig-versnelde beweging = grootte van de versnelling is constant (beweging met constante versnelling)
 a = constant v(t) = v0 + at x(t) = x0 + v0t + ½ at²
 t elimineren uit v(t) en x(t) :




= kinematische bewegingsvergelijkingen !! 5 belangrijke formules goed kennen
2

,2.7 VRIJ VALLENDE VOORWERPEN
Afwezigheid van luchtweerstand → alle voorwerpen vallen met dezelfde constante versnelling (bv appel en veer)
Valversnelling = versnelling van de zwaartekracht = g = 9,80 m/s²
 a = g = -9,8 m/s² v(t) = v0 – (9,8 m/s²) t² y(t) = y0 + v0t – ½ (9,8 m/s²) t²




t elimineren in v(t) en y(t):

aanwezigheid van luchtweerstand → valversnelling past zich aan afhankelijk van de vorm van het voorwerp
!! negatieve versnelling ≠ vertraging
- Vertraging = grootte van de snelheid neemt af
- Negatieve versnelling = versnelling is tegengesteld aan de positieve richting
(bv wanneer auto naar links rijd (neg richting), en negatieve snelheid toeneemt gaat die sneller in de neg richting)
2.8 INTEGRAALREKENEN
Snelheid: vx(t) = dx(t)/dt
 x(t) = x0 +

Versnelling: ax(t) = dvx(t)/dt
 v(t) = v0 +

HOOFDSTUK 3: KINEMATICA IN 2 EN 3 DIMENTIES ; VECTOREN
3.1 VECTOREN EN SCALAIREN
Vectoren = grootheid die zowel grootte als richting aangeeft (bv snelheid, verplaatsing, kracht, impuls)
Scalairen = scalaire grootheden = grootheden zonder richting (bv massa, tijd temperatuur)
➔ volledig gespecifieerd door getal & eenheid
3.2 OPTELLEN VAN VECTOREN
→ → →
Resulterende verplaatsingsvector DR = D1 + D2 a.d.h.v. kop-staart methode of parallellogrammethode


3.3 AFTREKKEN VAN VECTOREN
Δv = →
v2 – →
v1 = →
v2 + (-v→1)
➔ a.d.h.v. kop-staart methode

3.3 VERMENIGVULDIGEN VAN VECTOREN MET EEN SCALAIR
Scalair getal = c

- c>0 → cV : grootte vector verandert met factor c
richting blijft dezelfde

- c<0 → cV : grootte vector verandert met factor |c|
richting is tegenovergesteld aan V
3.4 VECTOREN COMPONENTSGEWIJS OPTELLEN
→ → → →
V = Vx + Vy en θ = hoek van V met x-as
 sin θ = Vy/V cos θ = Vx/V tan θ = Vy/Vx V² = Vx² + Vy²


3.5 EENHEIDSVECTOREN
→ = een vector die exact gelijk is aan één, ook wel aangeduid als î, j , k
Eenheidsvector = e

→ → → →
V = Vx + Vy + Vz = Vx→
ex + Vy→
ey + Vz→
ez


3

, 3.6 VECTORKINEMATICA
Positie en verplaatsingsvector (r)

plaatsvector r(t)
Verplaatsingsvector van t1 naar t2 (a)
= vector die de verandering van plaats voorstelt
≠ afgelegde afstand Δl langs de baan (scalar)
Snelheidsvector (v)→ Xy-vlak = traject in de
ruimte, niet persé in de tijd
Gemiddelde snelheidsvector = Δr / Δt (a)
(momentane) snelheidsvector = (b) (b)

→ = vx² + vy² + vz² = dl/dt (Als ∆𝑡 → 0 dan ∆l → dl)
Grootte van de snelheidsvector: |v|
Richting van de snelheidsvector: →
v= snelheidsvector raakt steeds aan de baan


Versnellingsvector (a)
Gemiddelde versnellingsvector = Δv / Δt
(momentane) versnellingsvector =

Versnellingsvector ≠ 0 → grootte en/of richting snelheidsvector verandert
→ = a ²+a ²+a ²
Grootte van de snelheidsvector: |a| x y z

!! Als |v| toeneemt, wijst a in dezelfde richting als v
Richting van de snelheidsvector: →a= →
Als |v| afneemt, wijst a tegengesteld aan v
→ in een bocht wijst de versnellingsvector altijd naar de binnenkant van de bocht

!! baan: y i.f.v. x-grafiek  positie: x i.f.v. t-grafiek

vector raakt steeds aan de baan richtingscoëfficiënt van de
raaklijn in punt = grootte van de
vectorcomponent van de
snelheidsvector


Beweging met constante versnelling (formules)
➔ In meerdere dimensies: componenten kunnen in beweging afzonderlijk bekeken worden (geen invloed op
elkaar) (hier: 2 of 3 dimensies)
➔ Voor x-component (horizontaal):
o vx = vx0 + axt
o x = x0 + vx0t + ½ axt²
o vx² = vx0² + 2ax(x – x0)
➔ idem voor y-component (verticaal) en z-component (diepte)
3.7 KOGELBAAN – PROJECTIELBEWEGING (toepassing beweging met constante versnelling)
→ voorwerp enkel onder invloed van zwaartekracht → versnelling = valversnelling = g
→ we negeren luchtweerstand

Projectielbeweging = combinatie van onafhankelijke horizontale en verticale beweging
➔ horizontaal (x): constante snelheid vx = v0 →
➔ verticaal (y) : constante versnelling ay = - g
Kogelbaanbeweging = lancering onder een hoek θ
➔ analoge analyse aan projectielbeweging
➔ beginsnelheid heeft nu ook een →
verticale component (y)
➔ Parabolische beweging (y = Ax – Bx²)
o Top: dy/dx = 0
o Bereik: y=0

4
R203,49
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Document also available in package deal

Reviews from verified buyers

Showing all 2 reviews
4 months ago

A very detailed summary with all the essential information. Thanks for saving me so much time!

11 months ago

Very good summary!

5,0

2 reviews

5
2
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
kaatcommeine Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
70
Member since
1 year
Number of followers
9
Documents
17
Last sold
1 week ago
samenvattingen handelsingenieur (in de beleidsinformatica)

Op mijn profiel vind je heel wat samenvattingen van handelsingenieur en handelsingenieur in de beleidsinformatica. Deze zijn ook steeds verkrijgbaar in voordeelbundels, waarop jullie heel wat kunnen besparen. Aarzel niet om een review achter te laten wanneer je iets gekocht hebt, deze helpen mij en zo kan ik ook mijn samenvattingen eventueel verbeteren. Wanneer ik een nieuwe versie upload zullen jullie dan melding krijgen.

4,6

12 reviews

5
8
4
3
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions