100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Lecture notes including summary of the Quantum Concepts course

Rating
-
Sold
-
Pages
33
Uploaded on
26-09-2024
Written in
2021/2022

Comprehensive lecture notes on the Quantum Concepts course given by Jorik van de Groep in the 2nd year of the bachelor's degree in Physics and Astronomy at the UvA/VU. At the end of the lecture notes, an overview/summary is available with all important concepts clearly listed and described for each lecture.

Show more Read less
Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 26, 2024
Number of pages
33
Written in
2021/2022
Type
Class notes
Professor(s)
Jorik van de groep
Contains
All classes

Subjects

Content preview

Quantum Concepten
Hoorcollege1
-

4 thema colleges en 1
herhalings college
atoomgassen quantum informatie elektronsystemen
> nanomaterialen , , ,
2d




ontwikkelen
meer
begrip
-




-
er
zijn 5 inlever
opgares /hier kun
je aan werken
tijdens de
werkcolleges
↳ minimaal 3 in leveren

5x
9%

-
tentamen 1x55 %; kort tentamen



-



syllabus hoofdstukken op Canvas /per week geplaatst)




Herhaling QM 1




In Classical Mechanics , we solve Newton's and law :



F =
ma =
m =X(t)


↳ know is
exactly where particle .




In Quantum Mechanics particles have wave behaviour described function :
,
by the wave



↑ (X ,
t)


In Quantum Mechanics ,
we solve
Schrodingers equation to
get the wave function :


~ external potential
it
ONteA + VP
↳ time
derivative
↓ and derivative
in
space




What does it mean ?

INR a
·

lik probability density
=




"

position of electron as a
function of
time is described by the wave function
b &
ab X


(IN( ,
t) ax :
gives probability of finding the
particle in this
range .




A


> Statistical interpretation

Notes : Particle is still a particle its location is described the wave function
by
·
,




· Inherent in determinacy



Particle has to be somewhere

~ Normalisation of the wave function :
A




& INIX tiax ,
= 1c use to find constants of wave function
-





**4
9 dx =




Exercise :


Mix t
Ac Siweh
real constants
=
,



↳ find Ak




~
Normaliseer de integraal : * =




In is door-i. ( etiwt)liwt
de complex geconjugeerde vervangen we alle




J he
&
↳ tijds afhankelijkheid vervalt


!
.




1Tax
= naal A
N
- e


buiten de inte
>
graal ! 6 ausische integraal
-
want constante



& Lax
.




Gausische integraal met standaardoplossing : eaxdxY
In dit geval : a = +
E en dus wordt de
oplossing ,
toc

A2 ,

10
Upon measurement :

INEx
12

m S
=

I I S
X X
↳ stort in
golffunctie
het moment dat
>
Op je meet weet je precies waar het
deeltje is de onzekerheid is opeens verdwenen ->
golf functie stort in
-


.
,




golffunctie wordt deltafunctie


(c)
* No more
uncertainty ,
one specific location
Ware function
*measure "collapses" upon measurement
again : same result

, Before measurement : What do we expect location to be ?



"expectation Value" (verwachtingswaarde) > <X)


~ Waar verwacht je dat het deeltje zich bevindt op het moment dat je het meet >
verwachtingswaarde
S




(x) =

( x (i(x ,
t))2ax
-



↳insert in front of
prob density




What does this mean !



> <X)
- is the
average of many measurements of X, of particles that have the exact same ware function



↳dus p identiefunctieswaarvanweallemaal metemen gemiddeldeen
daar neem het een
je




Mathematical tools




Define position "Operator" "working" ,
on a ware
function

* =
x = )
(y)
=

I 4
*
2xYNdx
&

-
2
=
xx =
Jy xydx*




Can we also define <
p >?


(p) = m(v) = mo(x)
↳ Schrödinger eq .
relates de to :




Pit De
s




↳ <p) = -




ih(*a
[p] = -
ingx


Now WecanDefine Dynamicvariables
in terms of xa!,




(T) = ax



-


Kinetische energie
Verwachtingswaarde




The uncertainty principle

Can we determine the location and momentum of a particle with
arbitrary accuracy ? (Like in Classical Mechanics



de Broglie formula :

P = hk =

22
↳ wave length




↑ X ? plaats kan hieruit niet worden afgeleid

.

I Golflengte
↑? > -
kan hieruit niet worden
afgeleid
3

&


X




& Heisenberg's uncertainty principle


Ex Op sh
↳ o =
(X -



(12] Standard deviation



Zowel impuls als plaats en
energie zijn operatoren in de QM , maar
tijd is dat niet



Tijd At levens duur elektron


S best
:




Energie = Zw : DE




Ok , so how do we find the actual form of the wave function ?

Let's revisit the Schrödinger equation :



~ external potential
it
O -t o = + VP
↳ time
derivative
↓ and derivative
in
space

↑ (x , t) function of X and t

↳ in reality ,
most potentials are independent of time .

, Separation of variables :
split X and t



M(x t) ,
=
((x)y(t)

in p d y +
vo

by =
7
+ V =
EY
↳ constant


in Et

in
-




=
Ey =
y(t) =
e



Time independent
-


Schrödinger equation :




+V =




Now ,
recall that =
-in and me


-hany + Vo =
Eq
2mdX
↳ kinetic ↳
potential ( total
energy
energy energy



↳ Hamiltonian operator J
82
2 =
- x
+ V(x) = jtp =
Ep




Eigenvalue problem :


↓ Eigenvalue

50 =
Eq
1-
Energy of eigen state
& &
S & ↑
Operator Eigenvector
E shape of
eigenstate


Examples of potentials :




Infinite square well


V(X) /
co




n= 3


~
20
oexa
vix =


M =2

~ otherwise

n=1



X

↳ En =
Methhe

The Harmonic Oscillator

xVIXI




~ V(x) = kx2


-
En =
(n 2) kw
+




-


& &
X




=>
Energy Spectra become discreet




The solution is
general a linear combination
of eigenstates :




M(x
o

Gifn'tS energy of staten
o




(nOn(Xigenstaten
,
ti =




n=
14
amplitude
coefficient

, Hoorcollege 2



-

Thema 7 : Quantum opsluiting in nanomaterialen



Leerdoelen :
·



Beschrijven van
quantumopsluiting in <D , 2D en 3D ; wat dit betekent voor de
golffunctie van elektronen


·

Voorbeelden noemen van nanomaterialen voor deze 3
categorieën
·

Quantumopsluiting <>
Deeltje-in-doosje
·
Schatten bij welke grootte van nanomaterialen
opsluiting een rol speelt
·
Praktische toepassingen

Experimenten beschrijven
·



waarin Lichtbaar is
quantumopsluiting .




Energieniveau's uitrekenen
·



van een elektron in een
quantumdot :
bijbehorende verwachtingswaarde voor de optische transitie




Contents of
today
:


·
Size does matter

Confinement and the ware function
·




· Dimensions of confinement

·
Free particle
Quantumwell >
-
1 D

Quantum wire -
> 2D
·

Quantum dot >
-
3D


Degeneracy and total
energy
·
Excitons , binding energy and Bohr radius


Optical properties
·




Size does matter




Properties of materials are
independent of their size...



Silicon "ingot" "wafer" >macroscopischobjectteomrooster
-
as the same properties as silicium as

↳ like : electrical conductivity
density
refractive index

heat transfer




-
down to a certain size
. Size does matter in the nanoworld :




Squantum dots




↳ in nanowereld quantumopsluiting vindt plaats
S
relevant >
maat is opeens
-




hiermee schuiven elektronenroosters en
↳ in kleine volumes
proppen van elektron golffuncties daarmee de
eigenschappen



Ok , then what is nano ?




In nanostructures , the electronic wave function can be confined


"Quantum Confinement "




↳ interfering wave functions cause standing wave patterns (staande golf)




&
" staande gof interfereert met zichzel
e





Scanning tunneling microscope

golf Functie 1112

Je meet hier direct de




How does confinement enter the
Schrödinger equation ?

t +
V)x = 2x =
24


↳ kinetic

energy
potentiaals

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
sterrehoefs Universiteit van Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
22
Member since
3 year
Number of followers
1
Documents
10
Last sold
1 month ago

3,5

4 reviews

5
1
4
1
3
1
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions