100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Calculus 1

Rating
5,0
(1)
Sold
16
Pages
9
Uploaded on
15-05-2012
Written in
2011/2012

Complex numbers, mathematical induction, limits, differentiation, transcendental functions, integrals

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Stof calculus 1
Uploaded on
May 15, 2012
Number of pages
9
Written in
2011/2012
Type
Summary

Content preview

1.1 Calculus 1

R reële getallen
N natuurlijke getallen ,0,1,2,…-
Z gehele getallen ,…,-2,-1,0,1,2,…-
Q rationale getallen (te schrijven als een breuk van gehele getallen)
C complexe getallen

Complexe getallen
Dictaat: Complex H1-H7

We voeren twee nieuwe, niet reële getallen in, die we i en –i noemen via de definitie i2 = (-i)2 = -1.
Complexe getallen zijn alle getallen van de vorm a + bi, waar a en b reëel zijn. We noteren de
verzameling van de complexe getallen met c. Dus c = { a + bi | a, b є r }

Vb: z = 3 + 2i w = -1 – i
z+w=2+i
z – w = 4 + 3i
z ∙ w = (3 + 2i)(-1 – i) = -3 - 5i – 2i2 = -1 – 5i
z = 3 + 2i = (3 + 2i)(-1 + i) = -5 + i = -5 + i om een term x + by uit de noemer weg te
w -1 – i (-1 – i)(-1 + i) 2 2 2 halen, vermenigvuldigen we teller en noemer
met x – by.

Voor het complexe getal z = a + bi noemen we het getal z = a – bi de complex geconjugeerde of
complex toegevoegde van het getal z. Voor z is a het reële deel en b het imaginaire deel. We noteren
het imaginaire deel met Im z = a en het reële deel met Re z = b.

We identificeren een complex getal met een punt in het platte vlak: x + iy (x, y), waarbij 1 dus op
(1, 0), i op (0, 1) en een reëel getal x op (x, 0) ligt.
Getallen van de vorm iy heten imaginaire getallen, de verzameling { iy: y є r } heet de imaginaire as.




Punten in het platte vlak kun je ook met poolcoördinaten weergeven: elk punt P wordt eenduidig
bepaald door de afstand r tot (0, 0) en de hoek φ die het lijnstuk van P naar 0 maakt met de positieve
x-as. Het paar (r, φ) zijn de poolcoördinaten van P, met de afspraak –π < φ ≤ π.

x = r cos φ en y = r sin φ
r = √(x2 + y2)

, cos φ = x . sin φ = y .
√(x2 + y2) √(x2 + y2)
r = modulus = |z|
φ = hoofdwaarde van het argument van z = Arg z

We spreken van het argument van z als we ons niet langer beperken tot –π < 0 ≤ π. Notatie: arg z.
Bij vermenigvuldigen van complexe getallen moet je de moduli van de complexe getallen met elkaar
vermenigvuldigen en de argumenten bij elkaar optellen.
|z1z2| = |z1| ∙ |z2| arg(z1z2) = arg z1 + arg z2

We hanteren als notatie eiφ = cos φ + i sin φ, dus een complex getal z met modulus r en argument φ
is te schrijven als: z = r cos φ + ir sin φ = r(cos φ + i sin φ) = reiφ.

De Moivre’s stelling: zn = rn(cos nφ + i sin nφ). Dus we verheffen de modulus tot macht n en
vermenigvuldigen de argumenten met n.


Volledige inductie
Dictaat: Inductie H1, H3

Somnotatie:





Volledige inductie is een methode om beweringen te bewijzen die voor alle natuurlijke getallen n
waar zijn. De manier waarop je hierbij te werk gaat is als volgt:
1) Basisstap: laat zien dat de bewering waar is voor n=1.
2) Inductiestap: laat zien dat de bewering waar is voor het getal m+1 als deze waar is voor m.


∑ ∑


Het binomium van Newton
De uitwerking van de tweeterm (a + b)n voor willekeurige n є N.

Voor een geheel getal n ≥ 0 schrijven we
n! =1∙2∙…∙n als n є N (Spreek uit: n-faculteit)
=1 als n = 0
(n + 1)! = n! ∙ (n + 1)

Verder: ( )

( )

( ) ( )
De binomiaalformule van Newton:

Reviews from verified buyers

Showing all reviews
8 year ago

5,0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Suzanvaneijden Vrije Universiteit Amsterdam
Follow You need to be logged in order to follow users or courses
Sold
148
Member since
14 year
Number of followers
91
Documents
5
Last sold
2 year ago

3,9

14 reviews

5
4
4
6
3
3
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions