100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Statistiek 4: MDA (BA3 VUB)

Rating
-
Sold
7
Pages
188
Uploaded on
15-06-2024
Written in
2023/2024

Dit is een volledige en uitgebreide samenvatting van het vak statistiek IV: multivariate data-analyse, gegeven in 3e bachelor Psychologie aan de VUB door Professor O. Mairesse. Het is een combinatie van de powerpoints en mijn eigen notities. Ik noteer altijd vrij letterlijk wat er gezegd wordt, zo kan ik het beter begrijpen. Geslaagd in eerste zit!

Show more Read less
Institution
Course













Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
June 15, 2024
Number of pages
188
Written in
2023/2024
Type
Summary

Subjects

Content preview

LenaC
Academiejaar: ’23 –‘24

Samenvatting statistiek IV
Inhoud
1. Verkennen van data .........................................................................................................3
1.1 Eyeballing data ............................................................................................................5
1.1.1 Grafisch verkennen van data ........................................................................................5
1.1.2 Analyse missing data ...................................................................................................6
1.1.3 Outliers ..................................................................................................................... 10
1.1.4 Assumpties ............................................................................................................... 11
1.1.5 Data transformatie ..................................................................................................... 15
1.1.6 Dummy codering ....................................................................................................... 17
2. Regressie-analyse.......................................................................................................... 19
2.1 Logistische regressie.................................................................................................. 31
3. Variantie-analyse ........................................................................................................... 40
3.1 Meervoudige vergelijkingen ........................................................................................ 61
4. Variantie-analyse 2 ........................................................................................................ 66
4.1 Twee-factor ANOVA.................................................................................................... 66
4.2 Repeated Measures ................................................................................................... 83
4.3 Mixed design.............................................................................................................. 86
5. Factoranalyse ................................................................................................................ 91
5.1 Methode voor FA ........................................................................................................ 97
5.2 Hoeveel componenten/factoren? ............................................................................. 100
5.3 Factorstructuur interpreteren ................................................................................... 103
5.4 Functionele Data analyse - FPCA .............................................................................. 109
6. Clusteranalyse ............................................................................................................ 113
6.1 Kenmerken van het model ........................................................................................ 114
6.2 Similariteitsmaten ................................................................................................... 115
6.3 Cluster procedures .................................................................................................. 120
6.3.1 Hiërarchische clustering .......................................................................................... 120
6.3.2 Partitioneringsmethoden .......................................................................................... 128
7. Inleiding in mediatie en moderatie ................................................................................ 134
7.1 Introductie causaliteit .............................................................................................. 134
7.2 Soorten relaties ....................................................................................................... 136
7.3 Mediatieanalyse ...................................................................................................... 140
7.3.1 Baron en Kenny methode ......................................................................................... 141
7.3.2 Sobel test ................................................................................................................ 145

1

,LenaC
Academiejaar: ’23 –‘24
7.3.3 Bootstrapping .......................................................................................................... 145
7.4 Moderatie-analyse ................................................................................................... 151
8. Structural Equation Modeling (SEM).............................................................................. 156
8.1 Praktisch voorbeeld ................................................................................................. 156
8.2 Wat is SEM? ............................................................................................................. 157
8.3 Confirmatorische factor analyse .............................................................................. 158
8.4 Stuctural model ....................................................................................................... 168
8.5 Pad analyse ............................................................................................................. 172
8.6 SEM......................................................................................................................... 173
9. Netwerken ................................................................................................................... 174
9.1 Psychologische netwerkbenadering .......................................................................... 174
9.2 Netwerkstructuren ................................................................................................... 175
9.3 Voorwaardelijke afhankelijkheid ............................................................................... 179
9.4 Centraliteit .............................................................................................................. 180
9.5 Pairwise Markov Random Fields (PMRF) .................................................................... 184
9.6 Modelselectie .......................................................................................................... 185
9.7 Netwerkstabiliteit .................................................................................................... 186
9.8 Netwerken vergelijken .............................................................................................. 187




2

,LenaC
Academiejaar: ’23 –‘24

1. Verkennen van data
Waarom data-analyse

• Data-analyse = noodzakelijk voor psychologen
- Data-analyse in de media
- Begrip van + kritische instelling tegenover vakliteratuur
- Kunnen verzamelen/analyseren van data

Bv: Corona heeft ervoor gezorgd dat er veel verkeerde info de wereld in gestuurd werd.
Dit had uiteindelijk zelfs impact op de wereldgezondheid (antivaxers)

• Data-analyse helpt je om:
- 1. Data te organiseren (grafieken,…)
- 2. Data te beschrijven (beschrijvende/deductieve statistiek, samenvatten)
Niet gewoon naar te tabellen kijken, maar visueel maken, ook in een artikel
- 3. Interpreteren en uitspraken doen op basis van data (inferentiële/inductieve
statistiek, verklaren)
- 4. Theorieën te verifiëren en aan te passen

Inductieve statistiek




• We kunnen dan bv gaan testen of een steekproef gemiddelde significant verschilt van
een populatie gemiddelde

Begrippen:

• Theorie → Hypothese → Steekproef → Steekproefgrootheden
• Steekproefgrootheid (statistiek, stat. grootheid): maat gebaseerd op de gegevens van de
steekproef (vb.: rekenkundig gemiddelde, proportie,…)
• Steekproefgrootheid = toevalsvariabele met een bepaalde verdeling →
steekproevenverdeling

Kwalitatieve checks doen nadat je een theorie hebt gevonden, alle alternatieve opties
voor die uitkomst nagaan, of die ergens anders door komen


3

,LenaC
Academiejaar: ’23 –‘24

• Stel: random steekproef 1 en we berekenen S1, random steekproef 2 (zelfde n) en we
berekenen S2, etc. tot Sn
- De verdeling van deze steekproefgrootheden = steekproevenverdeling
• SteekproeFverdeling (sample distribution)
- Frequentieverdeling van de uitkomsten van de
steekproef
- Empirisch, gekend
• SteekproeVENverdeling (sampling distribution)
- Kansverdeling van alle mogelijke waarden die een
steekproefgrootheid (voor alle mogelijke verschillende
steekproeven) kan aannemen
- Theoretisch, benaderen
• Stel: steekproefgrootheid = 𝑥̅
• Wanneer men herhaaldelijk toevallige steekproeven met grootte n trekt uit een normaal
verdeelde populatie met gemiddelde = µ en standaardafwijking = σ dan is de
steekproeven-verdeling van het steekproefgemiddelde normaal verdeeld




• Centrale limietstelling: Wanneer men herhaaldelijk toevallige steekproeven met grootte
n trekt uit een willekeurig verdeelde populatie met gemiddelde =  en standaardafwijking
=  en indien n voldoende groot (vuistregel: n 30) is, dan benadert de
steekproevenverdeling van het steekproefgemiddelde een normaalverdeling:




• Notaties:




4

,LenaC
Academiejaar: ’23 –‘24

1.1 Eyeballing data

1.1.1 Grafisch verkennen van data
• Onderzoek van verdelingen
- Histogram
- Stam-blad diagram
- Box Plot
• Zorgt voor een globaal zicht, geleerd in stat 1
• Boxplot: info over positie, spreiding, symmetrie




• Histogram: info over normaliteit van verdeling




• Stem en leaf: werkelijke waarden waarnemingen




5

, LenaC
Academiejaar: ’23 –‘24




Zo kan je bv zien bij een bivariate relatie tussen variabelen kan je het gemakkelijkste een
scatterplot gebruiken


1.1.2 Analyse missing data
Ontbrekende waarden voor 1 of meer variabelen

• Oorzaak?
- Onafhankelijk van respondent
o Procedure (bv: iemand “nee” ga naar vraag xxx” = branching)
Branching zorgt ook voor missing data, want een groot deel gaat blanco zijn
o Codeerfouten
Bv: mensen een online vragenlijst laten invullen
- Afhankelijk van de respondent
o Omvang? (veel of weinig)
Bv: af en toe iets missen of super veel mensen die iets niet hebben ingevuld
o Analyse van het profiel van missing data (is er systematiek of random?)

Missing data ga je sowieso krijgen bv: data kwijt zijn, hele grote uitschieters, zo krijg je gaatjes in
je dataset




6
R147,55
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Document also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
LenaCoe Vrije Universiteit Brussel
Follow You need to be logged in order to follow users or courses
Sold
327
Member since
2 year
Number of followers
118
Documents
17
Last sold
15 hours ago

4,1

18 reviews

5
8
4
5
3
4
2
1
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions