May/June 2013- Examination paper
Question 1
1.1 Describe the elementary row operations on a matrix.
solution:
• Multiply a row through by a nonzero constant
• Add a multiple of one row to another
• Interchange any two rows
1.2 Verify that
x = 19t − 35
y = 25 − 13t
z=t
is a solution of
2x + 3y + z = 5
5x + 7y − 4z = 0
solution:
Substituting for x, y and z in terms of t, we get
2(19t − 35) + 3(25 − 13t) + t
= 38t − 70 + 75 − 39t + t
=5
and
5(19t − 35) + 7(25 − 13t) − 4t
= 95t − 175 + 175 − 91t − 4t
= 4t − 4t
1
, =0
Thus we conclude that x = 19t − 35, y = 25 − 13t, z = t, t ∈ R is a solu-
tion of the system
1.3 a) Compute
3 2 1 3 0 −2
−5
5 1 0 1 −1 2
b) Find A in terms of B if 2A − B = 5(A + 2B)
solution:
3 2 1 3 0 −2
a) −5
5 1 0 1 −1 2
3 2 1 15 0 −10
= −
5 1 0 5 −5 10
−12 2 11
=
0 6 −10
1.3 b)
2A − B = 5(A + 2B)
2A − B = 5A + 10B
2A − 5A = B + 10B
−3A = 11B
11
∴A=− B
3
1.4 a) Given
3 −1
A=
0 −2
Compute A2 − A − 6I2
solution:
A2
3 −1 3 −1
=
0 −2 0 −2
3.3 + −1.0 3. − 1 + −1. − 2
=
0.3 + −2.0 0. − 1 + −2. − 2
9 −1
=
0 4
2
Question 1
1.1 Describe the elementary row operations on a matrix.
solution:
• Multiply a row through by a nonzero constant
• Add a multiple of one row to another
• Interchange any two rows
1.2 Verify that
x = 19t − 35
y = 25 − 13t
z=t
is a solution of
2x + 3y + z = 5
5x + 7y − 4z = 0
solution:
Substituting for x, y and z in terms of t, we get
2(19t − 35) + 3(25 − 13t) + t
= 38t − 70 + 75 − 39t + t
=5
and
5(19t − 35) + 7(25 − 13t) − 4t
= 95t − 175 + 175 − 91t − 4t
= 4t − 4t
1
, =0
Thus we conclude that x = 19t − 35, y = 25 − 13t, z = t, t ∈ R is a solu-
tion of the system
1.3 a) Compute
3 2 1 3 0 −2
−5
5 1 0 1 −1 2
b) Find A in terms of B if 2A − B = 5(A + 2B)
solution:
3 2 1 3 0 −2
a) −5
5 1 0 1 −1 2
3 2 1 15 0 −10
= −
5 1 0 5 −5 10
−12 2 11
=
0 6 −10
1.3 b)
2A − B = 5(A + 2B)
2A − B = 5A + 10B
2A − 5A = B + 10B
−3A = 11B
11
∴A=− B
3
1.4 a) Given
3 −1
A=
0 −2
Compute A2 − A − 6I2
solution:
A2
3 −1 3 −1
=
0 −2 0 −2
3.3 + −1.0 3. − 1 + −1. − 2
=
0.3 + −2.0 0. − 1 + −2. − 2
9 −1
=
0 4
2