100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

MAM1021S Lecture Notes Summary

Rating
-
Sold
-
Pages
187
Uploaded on
04-04-2024
Written in
2022/2023

These notes, taken for Mathematics 1B for Engineers (MAM1021S), serve as a comprehensive resource for the course. They are compiled from both in-class lectures and provided notes from the instructor. The content is structured in a sequential manner, covering the entire syllabus of the course. These notes offer concise summaries of key mathematical topics, along with worked examples to solidify understanding. They are invaluable tools for preparing for tests and exams.

Show more Read less

















Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
April 4, 2024
Number of pages
187
Written in
2022/2023
Type
Class notes
Professor(s)
T van heerden
Contains
All classes

Subjects

Content preview

Maths notes
Semester 2

, me
Integrals
imme
Review of Integration

An ANTIDERIVATIVE of f is a function F

>
such that -


dx
(F(x)] =
f(x)

The INDEFINITE INTEGRAL of f is the infinite

family of antiderivatives F(x) + C




(f(x)dx =
f(x) + C




The DEFINITE INTEGRAL of f from a to ↳

is the
signed bounded
by c= x b
=
area a
;
y
=

f(x) ; y
=
0


1




I'll a




Area-lim f(x, &x
n+ 0k = 1




This evaluated the FTC
can be
using

Area =
"f(x) dx
=

F(b) -


F(c)
E

, imme
Review of Integration
EX

5x
.




fxdx = + C




jxdx [5 1·
3
=
x + C


I =

5(2) + -

(5(k Fe)
=

E

meet
Integration by Substitution

Ex .

[20c . cos(s) dx LET x =
u




=

a
Scos(u) -




↳ CHAIN RULE
=

Scos(u) du



=
sin(u) + C
:
sin(x) + C




* CHAIN RULE :




Scos(u) dxc =
/ [sin (2)] o
e




=> (sin(u)] (u
dx
=
sin

, meet
Integration by Substitution
I 2
EX -
- x


S >c2 dx let u
= -
x

au=
O
value of u

- A change


S -
-C ·
"oc du


s
-
dx
=
Is
- du



- -Je
-
I

-F(c I
U

au
=
-


O
O

-
=



H -

el
-
=


E(t -


1)


Ex .
Soc Vect2 do let V =
x + 2

A - I

It
Sx
= an dx


du =
doc
I
2)
S(v ~ av
-
=




=
Sve -zu av
-

z -A + C


-


E(x
+ 2) -


(x+ 2) + c

, immense
Integration by Parts

Product rule
(fg)' =

fg +
fg)
d
fg =

(f'gax +
Sfg'dx
=>
Sf'gdx =

fg-Sfg'dx * FORMULA




6
Ex .
(xc .
cos(oc) doc

↑ ↑
9 >
-




g =
1 f =
since



=
xsin(x) /sinx I
-


.
do



=
xsin(x) +
cosx + C -
ADD + C WHEN No


MORE
S
!!! CHECK




[xsinxc + cosx + c]
=

Six + inx !!!
=
xCossa occosoc # SAME

, immense
Integration by Parts
IF ...




So cosoc doc

↓ ↓

- 9


-x g'
&

- = =
-sino




= Cossa +
Sjxsinx dx


-
MORE COMPLEX THAN

ORIGINAL



DO OTHER WAY



Ex
.
Sarctan (c). I doc

↓ >
- add x 1 B MUST

g MAKE FI

g' =



1 +
I

x
>
- = xC




=
Sarctan(x) -J x 1 +
doc




-5) The
2
=
arcton u =
1 + 0
x .
(c) -

- = Zoc

=
xc .
arcton(x) -[Inful + C daC


=
arctan(x) (n)1 + C
x =
+
x . -
+ x

, imme
Integration by Parts
3t


S
2

Ex .
t e


O d d

g
-' g' =
2t f =
523t
want
MAKE SIMPLER



=

[5 rest] !
+
-


=teat

>
- Do IBP AGAIN

g
O


fl


g 2 =
== 5
- -

0 -




[te't' Ect g
at


=+
* /estjo
3
-
+
3
O




-ja - -

, mens
Integrals with Trig functions

Stasc f f

-

Cos sins COSOC

sinx COSOC -
sinoc
-


In(cosod tanoc seco
? seco secoctanx




TRIG IDENTITIES
cos2 x + sin2 x
= I

sin 2x =
asinkcoss

cos2x = 1 -Isin2x = 2cos - I

1 + tan(x) =
Seco


Ex .

[secos doc


secx + tanx
=
x
sec
Seco + tans




&Seco
+ Secostanza
=
do let u =
Seco + tand
Secoct fansc
du = Secostano + seco
du doc


S -
= dx
*
u



=

Stau =
(n(u) + C
=
In/secx + tanxl + C

, mens
Integrals with Trig functions
Ex .

/sinGcosodo let u = sin O



=
cost

Su
=




=
sin C




Ex .

(secit)ton(t) de let u
=
Sec(t)
n -
sec(t)tcn(t)
=

Su
-
dt


=
↳ us + C


=
-se(t) + c




Ex
.
(cos(0) do * cos20 =
2 coo -
I

Cos20 + 1 =
cosO
= (cos (20) + 1 do Z




-
(tsin(20) + 0) + C


-
* sin(20) +
4 + C

, mens
Integrals with Trig functions

Ex .




[sin 0 cos'6 ao

-
u =



=
sin O

CosO =
I
du
-2
3 I
Sus COSO
=

cos O do dO
COS O
-


Su (1 Sus-
7
=>
-

sir 8) du
=
u du



-jut -**
I
+
C


-sin'o -Tsin8 + C


We can use this whenever we want to


[sin" (0). cos" (8)
integrate 90 B p or
q
is Odd




Ex .


(sin" (x) .
cos" (3) as


*
sin" (c)
S . . cos(c)
(x)
=
cos dx


=

(sin "(x)
*

. (cos"(x))" . cos(o) do



=

S sin" (x). (1 -
sinpcl)". cos() doc



let u =
sin(x) = cossc



=

S 434(1 -
12)"du
R200,00
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
elizabeth6666
3,0
(1)

Get to know the seller

Seller avatar
elizabeth6666 University of Cape Town
View profile
Follow You need to be logged in order to follow users or courses
Sold
8
Member since
4 year
Number of followers
6
Documents
6
Last sold
8 months ago

3,0

1 reviews

5
0
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions