100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Lecture notes Applied linear regression (SSTB031)

Rating
-
Sold
-
Pages
55
Uploaded on
20-03-2024
Written in
2023/2024

It is good when it comes to explaining linear regression












Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
March 20, 2024
Number of pages
55
Written in
2023/2024
Type
Class notes
Professor(s)
Mr maluleke
Contains
All classes

Subjects

Content preview

UNIVERSITY OF LIMPOPO



SSTB031 STUDY GUIDE

APPLIED LINEAR REGRESSION

Compiled

By

Mr Maluleke H

2022

, Table of Contents

CHAPTER 1: SIMPLE LINEAR REGRESSION AND CORRELATION ................. 4
1. Introduction.................................................................................................... 4
1.1 Simple Linear Regression Model ............................................................. 4
1.2 Estimation of the Regression Parameters................................................ 6
1.3. Correlation ............................................................................................ 11
What does the standard error means? ............................................................ 15
The sampling distribution of the slope (  1 ) of the regression model ............... 15

Hypothesis testing for 0 and 1 ................................................................... 17
CHAPTER 2: DIAGNOSTICS FOR SIMLPLE LINEAR REGRESSION .............. 19
2.1 Introduction................................................................................................ 19
2.2 Residual Analysis ...................................................................................... 19
Examination of Residuals ................................................................................ 20
Different Patterns of Residual plots ............................................................. 21
2.3 Identification of Outliers ............................................................................. 22
2.4 Detection of Influential observation ........................................................... 23
2.3.1 Leverage procedure ............................................................................ 23
See an electronic book!!! ............................................................................. 23
2.3.2 Deleted residual method ..................................................................... 23
2.3.3 Cook’s distance .................................................................................. 24
CHAPTER 3: MULTIPLE REGRESSION MODEL .............................................. 26
3.1 Multiple Linear Regression Model .......................................................... 26
Matrix Approach to Regression Analysis ..................................................... 26
3.2 Estimation of Regression coefficients .................................................... 28
3.3 Test for the significant of the overall model............................................ 31
3.4 Test for the significant of the regression coefficient ............................... 32
3.5 Inferences about the mean response .................................................... 33
3.6 Inferences about the individual response fitted values .......................... 34
3.7 Multiple Coefficient of determination (R2)............................................... 34
3.8 Testing Portions of the Multiple Regression Model ................................ 35


2

,CHAPTER 4: DIAGNOSTICS FOR MULTIPLE REGRESSION ......................... 40
4.1 Introduction................................................................................................ 40
4.2 Residual Analysis ...................................................................................... 40
Examination of Residuals ................................................................................ 41
different patterns of the residual plots: as in simple linear regression .......... 42
4.3 Identification of Outliers ............................................................................. 43
4.4 Detection of Influential observation ........................................................... 43
4.4.1 Leverage procedure ............................................................................ 43
4.4.2 Deleted residual method ..................................................................... 44
4.4.3 Cook’s distance .................................................................................. 44
4.5 Collinearity................................................................................................. 45
CHAPTER 5: MODEL-BUILDING ....................................................................... 46
5.1 Backward elimination ................................................................................ 46
5.2 Forward elimination ................................................................................... 46
5.3 Stepwise Regression ................................................................................. 46
Appendices ......................................................................................................... 47
Appendix A: Class Examples .......................................................................... 47
Appendix B: Time table ....................................................................................... 51
Appendix C: Module Outline ............................................................................... 52




3

, CHAPTER 1: SIMPLE LINEAR REGRESSION AND
CORRELATION

1.1 Introduction
We have dealt with data that involved a single variable x. In this section, we shall
deal with paired variables x and y. Paired variables means that, for each value of y
there is a corresponding value of x. Here's an example of paired variables:


x 24 15 17 32 19 18 25 34

y 22 11 14 30 17 12 23 31



When confronted with paired data, we are often confronted with two questions:
 Is there a relationship between the variable x and its counterpart y, and
 If so what is the exact nature of the relationship?
 Can you predict the value of y given the value of x?


1.2 Simple Linear Regression Model
Regression explores the expression of this relationship with the use of a regression
Line.
We can establish this statistical relationship in the form of a linear equation. This
equation is used to predict the value of one variable given the value of its partner.
The equation is known as a regression line. The analysis designed to derive an
equation for the line that best models the relationship between the dependent and
independent variables is called the regression analysis. This equation has the
mathematical form:


yi   0  1 xi + i (0)

where yi is the value of the dependent variable for the ith observation.
xi is the value of the independent variable for the ith observation.
i is a random error and




4
R133,33
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
jacksonmobe

Get to know the seller

Seller avatar
jacksonmobe
View profile
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
1 year
Number of followers
0
Documents
2
Last sold
-

0,0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions