100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary management research methods 2 (grade 8,5!)

Rating
-
Sold
-
Pages
20
Uploaded on
29-01-2024
Written in
2023/2024

Total summary of management research methods 2.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 29, 2024
Number of pages
20
Written in
2023/2024
Type
Summary

Subjects

Content preview

SUMMARY MRM2




Week 1 – ANOVA................................................................................................................2
Week 2 – Factorial ANOVA.................................................................................................6
Week 3 – Regression..........................................................................................................8
Week 4 – Regression (advanced) & mediation..................................................................13
Week 5 – Logistic Regression............................................................................................15
Week 6 – Factor Analysis..................................................................................................17

,Week 1 – ANOVA

PV (predicted value)  OV (outcome value)
The predicted value has an effect on the outcome value.
Or:
IV (independent variable: variable that explains)  DV (dependent variable: variable to be
explained)

The p-value =
The probability of obtaining a result (or test-statistic value) equal to (or ‘more extreme’ than)
what was actually observed (the result you actually got), assuming that the null hypothesis is true.
A low p-value indicates that the null hypothesis is unlikely.

Conceptual models
Conceptual models = visual representations of relations between theoretical constructs (variable) of
interest (and typically also visualize the research question).

In research by “model” we mean a simplified description of reality.

Variables can have different measurement scales:
- Categorical (nominal, ordinal) – subgroups are indicated by numbers or names.
- Quantitative (discrete, interval, ratio) – we use numerical scales, with equal distances
between values.
We often use psuedo interval scales (Likert scales) = a scale from 1 till ..

Conceptual models: moderation

Conceptual models: mediation
One variable mediates the relationship between two other variables.




ANOVA = Analysis of Variance

Comparing the variability between the groups against the variability within the groups.
“How can we investigate with a certain level of (statistical) confidence, what differences there might
be between the groups?”

ANOVA is used to test whether statistically significant differences exist in scores on a quantitative
outcome variable (partner attractiveness, customer satisfaction, ...) between different levels (groups)
of a categorical predictor variable (alcohol consumption, shopping channel, ...).

The idea behind an ANOVA is to statistically investigate whether different groups score differently on
a quantitative outcome.
- How much of the variability in our outcome variable can be explained by our predictor
variable.

, - Breaks down different measurement of variability through calculating sums of squares.
- Via these calculations, ANOVA helps us to test if the mean scores of the groups are
statistically different.

We use (One way Between-subjects) ANOVA when:
- OV (outcome variable) = quantitative
- PV (predictor variable) = categorical with more than 2 groups




SSR (unexplained variance) = a part in the statistics that cannot be explained.

ANOVA steps
1. Data suited for ANOVA?
- Nature of the variables (OV = quantitative and PV = categorical)
- Assumptions met?
a) Variance is homogenous across groups. (by using the levene’s test) in PV.




b) Residuals are normally distributed (don’t test this in this class)
c) Groups are roughly equally sized (in this class they always are) (ANOVA is very sensitive
to this) in PV
d) Our subjects can only be in one group in PV
e) There are >2 groups in PV
2. Model as a whole makes sense?  F-test model, R2
1. Total sum of squares (=total variance in the data)
Get the mean of all the data. Do all the (data – overall mean) 2 and add them all up.
Why square? So positive and negative numbers don’t cancel each other out.




2. Model sum of squares (=variance explained by the model)
(group mean – overall mean)2 and add them all up

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
Ninavdtop Capabel Opleidingen (OCW-erkend)
Follow You need to be logged in order to follow users or courses
Sold
65
Member since
4 year
Number of followers
21
Documents
5
Last sold
6 days ago

4,2

12 reviews

5
4
4
6
3
2
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions