May/June 2020 Exam Memo
, PuesTlorn i
‘4:2 (e) For PROPERTIES
Accor QI pins To THEOREM
OF 2£E20 MATRICES
= EF TTR Et c=0 «® A=0
[IE cA
dos —(HE = (=! ORE ECT
of @: (@) 1&8
= + 5 Pd =
T- ~ 7) || AE (2 &
THER Cc Fol
Let C be an m by n matrix and k a scalar such
STATeme~T that kC = 0. Which of the following statements
is/are correct?
ON Lv A C=0.
A. Eitherk=0or
ANSWER A.
| B. kis not zero and C is not the zero matrix.
eee
;
A Ss coreECT
ARE
SQUARE MATRICES
1
2 is ioCRreCT - oN
symm TIC
Let T be an m by n matrix.
© a ™~ S| “
Which of the following statements is/
ARS WEE CLO are correct?
A.T=-Tifandonlyif
Tis the m by n
zero matrix.
B.T=-Tif Tis an mx n symmetric
matrix.
, PuesTion 2
A AND @ BE ZX 2 MATRICES Let AandBbe
3x3
(2T
matrices. Given that
o Which of the following
A= } o | = Es statements is/are correct?
ACLS NS TO THEOREM 1.4 -b
MATRICES WITH THE SAME &i2C
IF A&R Are INVEETIE LE
n=l = TE |
Ther AR 1s inveeTise And (pe) = 27 A
AB = N%® 5B
| ehh [
S01 2A IE oA)
| —-1
|
Coa) () 2T=3 |
—= (2+0-1) ne:
(143)
—
(641-3) (4+3%)
PF 3 2
3-1-1) ( 241) (141)
AN WO
& XF
AS TCR
ir oF
= ARG fai]
T (el
- | EMINAN
E,
b& (=
RE EN La ET
THE <' por |
oO
2
-
pa
rer) _2 (5-2) + (12-7)
- 3
, QRuesTion 3 (communion)
THE AKIOINT OF Ald
CALCULATE
2 = 8
Cl CA 4
G2 in| — i
2
Glaizh,
Ea
=i|igte =
IR
EA
Ee ©
a) = la Sg
he aiys J) NE
Co
BOWS wi TH
E
Zs | TERCHANG
-5
+) (© BX CoLuU rps
= g -3 -l
-b 2 O
SS -3 2
det (ag
| x =d -
= rm
=
SEALE mp
S|
3 8/2 | 2)
| o
Bh
= = pi 2 |