100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Formulari Probabilitat i Estadística

Rating
-
Sold
-
Pages
3
Uploaded on
10-09-2023
Written in
2022/2023

Formulari de temari de probabilitat i estadística. Inclou les fórmules dels models probabilistics, esperances, recurrències, cadenes de markov, estadística, Rstudio i més. Temari en diversos idiomes. Perfecte per preparació d’examens i per practicar exercicis.

Show more Read less
Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
September 10, 2023
Number of pages
3
Written in
2022/2023
Type
Summary

Subjects

Content preview

I* DOM VARIABLES
:



!Fe(X) = 0 (2) Fx non-decreasing f (3) E is right-cont .:
fe(x) - i
Density func
- -




b) cythen Fe(x = Fx() lim
aFa(x) Fx(a)
Fe(x) Distribut
=




↑(ac Fe(b) Fe(a) Prob
Fa(x)
x
=




1 x
+ -
=
- .




function
↑(A = a) =

Fa(c) -
4 Fx(a)
↑(A >x) = 1 -
P(Acx) =
1 -


x
- Fx(t) P(A >x) =
1 -

/A ex) =
1 -


Fe(t)

DISCRETE PROBABILITY MODELS DISCRETE EXPECT .
& MOMENTS CONT PROBABILITY MODELS

·
BERNOULLI MODEL -D noves 2
po- EXPECT E( E ) x PP(A =
x) ·
UNIFORM (CONT) -> toti els
=
.

-
·
.
xim

ssibles resultats 1)
intervals amd la meteixa llargada teven
(0 : la mateixa
probabilitat .




G
IP(A 0)
=
1 - p
P(X 1) P 1xb -
a) x + [a b]
baia x(x)
= =
=
,




f((x)
=


=




probability of success)
,

[a
Sp -x 0 x , b]




= Ya
X La
* =
Ha we wile -Be(p) a
acxcb
, x -




FE(x)
b
* ~u([a b))
x ,



· BINOMIAL MODEL-# d'exits en ma




seq, de Berwoullis indes .

· EXPONENTIAL -

per
modelar temps
d'un event
P(A =

k) =



(2)pk qn-
1
n =
0
,
1
....,
d'espera per
l'ocurrencia
,
->
E(E +
1) =

E(X) +
E[4] -
xx
Newt . # ~ Bin (n
p) e[a bAT bE[A) f((x) =
xe 11 a(X)
XE(A)
-
,
a (
E(XE)
=
+
,
B in
+




k
=




(k)p"(1
U

4))"
->
~xx
,
,


y(4 (p
-




-D
E P( n) = (1 1
1 xedt for x30
=




* 1
= +
- =

e
-




E[E 7] ETAJE [1] INDEPDo Fe(x)
= -
=
:
-
.
.

-
!



x
E(7) E(q(A)) , (
Exp(x)
=

*
=
=




· POISSON MODEL - # d'events casuals

que ocurreixen en u tems fixe -
MARKOU-INEG
:



P(Asa)
= El · if En ~Geom() P(*n :

= kn) =

1-11 -


2) "
- xk

Eso
-> 1
e 1 e
-




4)
Pla
=




x k/P(A x)
=
=




Excel
=




MOMENTS -DE[A"]
=




·
· IP(Ast) * > s) =

PP(A)t s) -




* 40(X) (X freq ,
#d'events milja) · k-th central moment of A : · Poison Point Process :

↑(T1H)= IP (*
+? 1)
x
( A)) "P(A (TrExp(X))
-




↳ m) Polnoml E((I E( *))") z(x x) =1
4(Aq 0) 1 e
= -
-




A ~Bin(n
=
=

m
-




quan nom
- =

=
,
x t (r)
constant (x)
convergeix a ma
modelar
· VARIANCE -P second central moment · NORMAL-D pernet nombroses

ferimens naturals socials i
psicologics
,



6 Var(A) El(A E(Al))
=
=




GEOMETRIC
-




MODEL-D # d'intents
=




· L

de Bernoullis per aconseguir el ser exit .
Var( A)
=



E(12) -
E(A)2 fx(x)
1
qk k 1 2 3 Stand Deriv -D 6 == +v Var(A)
N(m 6) = variation)
-




P(E k) (m expect
=
·

p *
=
, , .. .


~
.
= =




(
,
, ,


·
Chebysher Freg -- P(1X- E(X)1a) -




Normal Distrib >N 10 11
·
SUM OF A GEOMETRIC SERIES ~D · Stand . .
-

,




p(k
: En e*
-"
es en e
2

42 4)k
E n) /1
(1
-




(*
=
=
- -
=
=




,
,




agreen estam
P a
=
1 S
1 -
x -
p)↳
( .
H en



· SLIGHT VARIATION
-
# d'intents falliti ar
oMOIURE-LAPLACE :
Binomial tends to a


del der exit : Normal for
large
ser
baws n -



P(E k) qkp k 0 1

(2) par
2
fa(h)
= =
=




a)
, ,
...




P (A
, =

= ~



· LACK OF MEM .
-
I (A ? r+s1A2r) =
P(A3s) ↳Var(A) = 0 -0
A =


E(A)

↳Var(a) 0 · GAMMA -D
procediment acd
Geom(p)
=



a passos
*

~


(a1) a2 Var ( A) cadasom
↳ var indep pren Exp/N quant temps
=




, . de

(A+ )
/t
NEG BiN MODEL-D de ↳ var var(A) +Var(4) +2 Cor(A 7) ↑ (x)
*
t for
en ma
seq
=
=


· . . .
,
at x 0

el # d'intents fins (E 1) Var(1) +Var(I) ~D INDEP
I
indep ↳Var
a- =




Bernoultis
+




,



rribar a (rexits .
↳ var (I) =



E(var(E11)) +
VarIE/IlE)) ↑(x 1)
+
=


xi(x)T(n 1) +
=

n !
xx
(r 1) pqk-r f(x) x - for
-




k=r 1 (M6F) x30
P(A =

h) =
-
,
r +

...
o MOMENT GENERATING FUNCTION =




et (A x) Ganma(x X)
*




r) E (et ) z
NegBin(p
*
*


~
Louk # dintents) MA(t)
=

= =
:

. ,
x= (2)
E(E4)tk ·
Exp Gamma(1 X) Neg Bin cont version
obtenin la distrib
=




2
=



Me(t)
, .




Quen 1
=




grom
· = .




k!
.



k, 0




· BETA-D Euler Beta fus :
· HYPER GEOM . MODEL -
extraiem mos-



/! (1 t)Y
-




tres de tamany'r' d'una pobl .
detanary B(x y) ,
=


t
*
- d+ for x , y 0



inquete im individus de tipus 1 :
(x)T (y)




(n -m) de tipus 2 Volew comptar els +1
B (x
-

y)
=




, T(x +


y)




e est,
(2)(2 z) =


1 2
P(A
=
0
k)
...

= = , ,


(2)
Hypbeom (n
*



~
,
m
,
r)



tots intervali de
· UNIFORM MODEL -D ell
CONT RANDOM VARIABLE
*



~ Beta(x , !
mateixa mateixa
.

la
la long teven prob .




(" ftd probdesie
.




IP(A =

k) =
Yu k = 1
,
2
, . . . ,
·
Fa(x)
=




CONT .
EXPECT .
& MOMENTS

- -
u(n) ETAJ =
E ,
X:
VII) =
x
FTC :
fx(x) =




Fx(x) 0
Expect - E(A) =
(-8xfx(x)dx
oP( A x) = =



Fa(x) -



(Fx(t)
= 0 0 k-th moment- -(A4) =




(x " fa(x) dx
h) central k-th --
E(1 E(X(4) (-8(x- (A)"f((x) =




↑(ac(a
mom
-
.

o

f(a)
+



=

02nd central mom .
is the variance of A :




6 Var(E) (EY)
2

* E
/ E (A)
= =
-




* [A] =




(/z xyf(x y)dxdy ,
R119,07
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
caseydileephardy

Get to know the seller

Seller avatar
caseydileephardy Universitat Politécnica de Cataluña
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
2 year
Number of followers
0
Documents
1
Last sold
-

0,0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions