, For Instructors
Solutions to End-of-Chapter Exercises
,Chapter 2
Review of Probability
(a) Probability distribution function for Y
Outcome (number of heads) Y0 Y1 Y2
Probability 0.25 0.50 0.25
(b) Cumulative probability distribution function for Y
Outcome (number of heads) Y0 0Y1 1Y2 Y2
Probability 0 0.25 0.75 1.0
(c) Y = E(Y ) (0 0.25) (1 0.50) (2 0.25) 1.00 . F
d
Fq, .
Using Key Concept 2.3: var(Y ) E(Y 2 ) [E(Y )]2 ,
and
(ui |Xi )
so that
var(Y ) E(Y 2 ) [E(Y )]2 1.50 (1.00)2 0.50.
We know from Table 2.2 that Pr (Y 0) 022, Pr (Y 1) 078, Pr ( X 0) 030,
Pr( X 1) 070. So
(a) Y E(Y ) 0 Pr (Y 0) 1 Pr (Y 1)
0 022 1 078 078,
X E( X ) 0 Pr ( X 0) 1 Pr ( X 1)
0 030 1 070 070
(b) E[( X )2 ]
2
X X
(0 0.70)2 Pr ( X 0) (1 0.70)2 Pr ( X 1)
(070)2 030 0302 070 021,
Y2 E[(Y Y )2 ]
(0 0.78)2 Pr (Y 0) (1 0.78)2 Pr (Y 1)
(078)2 022 0222 078 01716
©2011 Pearson Education, Inc. Publishing as Addison Wesley
, Solutions to End-of-Chapter Exercises 3
(c) XY cov (X , Y ) E[( X X )(Y Y )]
(0 0.70)(0 0.78) Pr( X 0, Y 0)
(0 070)(1 078) Pr ( X 0 Y 1)
(1 070)(0 078) Pr ( X 1 Y 0)
(1 070)(1 078) Pr ( X 1 Y 1)
(070) (078) 015 (070) 022 015
030 (078) 007 030 022 063
0084,
XY 0084
corr (X , Y ) 04425
XY 021 01716
For the two new random variables W 3 6 X and V 20 7Y , we have:
(a) E(V ) E(20 7Y ) 20 7E(Y ) 20 7 078 1454,
E(W ) E(3 6X ) 3 6E( X ) 3 6 070 72
(b) 2 var(3 6X ) 62 2 36 021 756,
W X
V var(20 7Y ) (7) Y2 49 01716 84084
2 2
(c) WV cov(3 6X , 20 7Y ) 6 (7) cov(X , Y ) 42 0084 3528
WV 3528
corr (W , V ) 04425
WV 756 84084
2.4. (a) E( X 3 ) 03 (1 p) 13 p p
(b) E( X k ) 0k (1 p) 1k p p
(c) E( X ) 0.3 , and var(X) = E(X2)−[E(X)]2 = 0.3 −0.09 = 0.21. Thus = 0.21 = 0.46.
var( X ) E( X 2 ) [E( X )]2 0.3 0.09 0.21 0.21 0.46. To compute the skewness, use
the formula from exercise 2.21:
E( X )3 E( X 3 ) 3[E( X 2 )][E( X )] 2[E( X )]3
0.3 3 0.32 2 0.33 0.084
Alternatively, E( X )3 [(1 0.3)3 0.3] [(0 0.3)3 0.7] 0.084
Thus, skewness E( X )3/ 3 0.084/0.463 0.87.
To compute the kurtosis, use the formula from exercise 2.21:
E( X )4 E( X 4 ) 4[E( X )][E( X 3 )] 6[E( X )]2 [E( X 2 )] 3[E( X )]4
0.3 4 0.32 6 0.33 3 0.34 0.0777
Alternatively, E( X )4 [(1 0.3)4 0.3] [(0 0.3)4 0.7] 0.0777
Thus, kurtosis is E( X )4/ 4 0.0777/0.464 1.76
©2011 Pearson Education, Inc. Publishing as Addison Wesley
Solutions to End-of-Chapter Exercises
,Chapter 2
Review of Probability
(a) Probability distribution function for Y
Outcome (number of heads) Y0 Y1 Y2
Probability 0.25 0.50 0.25
(b) Cumulative probability distribution function for Y
Outcome (number of heads) Y0 0Y1 1Y2 Y2
Probability 0 0.25 0.75 1.0
(c) Y = E(Y ) (0 0.25) (1 0.50) (2 0.25) 1.00 . F
d
Fq, .
Using Key Concept 2.3: var(Y ) E(Y 2 ) [E(Y )]2 ,
and
(ui |Xi )
so that
var(Y ) E(Y 2 ) [E(Y )]2 1.50 (1.00)2 0.50.
We know from Table 2.2 that Pr (Y 0) 022, Pr (Y 1) 078, Pr ( X 0) 030,
Pr( X 1) 070. So
(a) Y E(Y ) 0 Pr (Y 0) 1 Pr (Y 1)
0 022 1 078 078,
X E( X ) 0 Pr ( X 0) 1 Pr ( X 1)
0 030 1 070 070
(b) E[( X )2 ]
2
X X
(0 0.70)2 Pr ( X 0) (1 0.70)2 Pr ( X 1)
(070)2 030 0302 070 021,
Y2 E[(Y Y )2 ]
(0 0.78)2 Pr (Y 0) (1 0.78)2 Pr (Y 1)
(078)2 022 0222 078 01716
©2011 Pearson Education, Inc. Publishing as Addison Wesley
, Solutions to End-of-Chapter Exercises 3
(c) XY cov (X , Y ) E[( X X )(Y Y )]
(0 0.70)(0 0.78) Pr( X 0, Y 0)
(0 070)(1 078) Pr ( X 0 Y 1)
(1 070)(0 078) Pr ( X 1 Y 0)
(1 070)(1 078) Pr ( X 1 Y 1)
(070) (078) 015 (070) 022 015
030 (078) 007 030 022 063
0084,
XY 0084
corr (X , Y ) 04425
XY 021 01716
For the two new random variables W 3 6 X and V 20 7Y , we have:
(a) E(V ) E(20 7Y ) 20 7E(Y ) 20 7 078 1454,
E(W ) E(3 6X ) 3 6E( X ) 3 6 070 72
(b) 2 var(3 6X ) 62 2 36 021 756,
W X
V var(20 7Y ) (7) Y2 49 01716 84084
2 2
(c) WV cov(3 6X , 20 7Y ) 6 (7) cov(X , Y ) 42 0084 3528
WV 3528
corr (W , V ) 04425
WV 756 84084
2.4. (a) E( X 3 ) 03 (1 p) 13 p p
(b) E( X k ) 0k (1 p) 1k p p
(c) E( X ) 0.3 , and var(X) = E(X2)−[E(X)]2 = 0.3 −0.09 = 0.21. Thus = 0.21 = 0.46.
var( X ) E( X 2 ) [E( X )]2 0.3 0.09 0.21 0.21 0.46. To compute the skewness, use
the formula from exercise 2.21:
E( X )3 E( X 3 ) 3[E( X 2 )][E( X )] 2[E( X )]3
0.3 3 0.32 2 0.33 0.084
Alternatively, E( X )3 [(1 0.3)3 0.3] [(0 0.3)3 0.7] 0.084
Thus, skewness E( X )3/ 3 0.084/0.463 0.87.
To compute the kurtosis, use the formula from exercise 2.21:
E( X )4 E( X 4 ) 4[E( X )][E( X 3 )] 6[E( X )]2 [E( X 2 )] 3[E( X )]4
0.3 4 0.32 6 0.33 3 0.34 0.0777
Alternatively, E( X )4 [(1 0.3)4 0.3] [(0 0.3)4 0.7] 0.0777
Thus, kurtosis is E( X )4/ 4 0.0777/0.464 1.76
©2011 Pearson Education, Inc. Publishing as Addison Wesley