100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary CALCULUS

Rating
-
Sold
-
Pages
121
Uploaded on
22-05-2022
Written in
2021/2022

IT TEACHES THE BASICS OF CALCULUS












Whoops! We can’t load your doc right now. Try again or contact support.

Document information

Uploaded on
May 22, 2022
Number of pages
121
Written in
2021/2022
Type
Summary

Subjects

Content preview

Calculus

Collection of tutorial exercises for Bachelor of
Engineering Mathematics (EMA105B) students at
Tshwane University Technology compiled
by
Dr M. Aphane with the help of tutors Ms Daphney
Hlotse and Mr Akis Muepu at the Department of
Mathematics and Statistics


2020


Revised : ET Motlotle

,The main purpose of this compilation of tutorial exercise is to collect problems
from different calculus books for students who enrolled for Engineering
Mathematics 1 (EMA105B) at Tshwane University of Technology. The tutorial
guide does not replace the prescribed book. It is still necessary for students to buy
and use the prescribed book.


Calculus is divided into two parts, which are differentiation and integration. Some
applications on differentiation and integration are also included. The guide is
structured in such a way that problems are sorted by topics and some solutions
are provided at the end of each chapter. Some examples and basic introductions
are also provided at the beginning of each chapter.


We trust that you will find the tutorial guide useful and enjoy using it. If you
encounter any errors, incorrect solutions or suggestions on how to improve this
tutorial guide. Feel free to contact us on .




©COPYRIGHT : Tshwane University of Technology
Private Bag X680
PRETORIA
0001


All rights reserved. Apart from any reasonable quotations for the purposes of research
criticism or review as permitted under the Copyright Act, no part of this book may be
reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopy and recording, without permission in writing from the publisher.




ii

,Contents
Chapter 1 ............................................................................................................................................... 1
Differentiation ................................................................................................................................... 1
1.1 The derivative and the tangent problem ............................................................................. 1
1.2 Derivative of a function ........................................................................................................ 1
1.3 Chain Rule Differentiation ................................................................................................... 3
1.4 Implicit Differentiation ......................................................................................................... 5
1.5 Logarithmic and Some Implicit Differentiation ................................................................. 8
1.6 Higher Order Derivatives ................................................................................................... 11
1.7 Optimization ........................................................................................................................ 12
1.8 Parametric Differentiation ................................................................................................. 17
1.9 Differentiation of Hyperbolic Functions ........................................................................... 20
1.10 Inverse Trigonometric Functions ...................................................................................... 21
1.11 Inverse Hyperbolic Functions ............................................................................................ 27
Chapter 2 ............................................................................................................................................. 30
Applications of Differentiation ...................................................................................................... 30
2.1 L’Hopital’s rule:.................................................................................................................. 30
2.2 Curve Sketching and Tangents and Normal .................................................................... 32
2.3 Newtown – Raphson Method ............................................................................................. 36
2.4 Maclaurin Series ................................................................................................................. 38
2.5 The Binomial Expansions ................................................................................................... 40
Chapter 3 ............................................................................................................................................. 42
Partial differentiation ..................................................................................................................... 42
3.1 Partial derivatives .............................................................................................................. 42
3.2 Clairaut’s Theorem ............................................................................................................ 43
3.3 Critical points ...................................................................................................................... 44
3.4 The second partial test ........................................................................................................ 44
3.5 The total differential ........................................................................................................... 45
3.6 Small change ........................................................................................................................ 46
3.7 Rate of change and chain rule ............................................................................................ 47
3.8 Implicit partial differentiation ........................................................................................... 49
3.9 Application of partial derivatives (Partial Differential equations) ................................. 50
Chapter 4 ............................................................................................................................................. 51
Single Variable Integration ............................................................................................................ 51
4.1 Anti-derivative and indefinite integrals ............................................................................ 51


iii

, Indefinite integrals .......................................................................................................................... 51
4.2 Integration by Substitution ................................................................................................ 53
4.3 Integration of Inverse Trigonometry and Inverse Hyperbolic Functions ..................... 56
4.4 Integration by Partial Fraction.......................................................................................... 57
4.5 Integration by Parts ............................................................................................................ 60
4.6 Trigonometric Integrals ..................................................................................................... 63
4.7 Trigonometric Substitution ................................................................................................ 68
Chapter 5 ............................................................................................................................................. 73
Application of Integration .............................................................................................................. 73
5.1 Mean Value Theorem for Integrals ................................................................................... 73
Theorem (Mean Value Theorem for Integrals) ............................................................................ 73
5.2 Root Mean Square value (RMS value) .............................................................................. 74
5.3 Area between the curves ..................................................................................................... 78
5.4 Motion .................................................................................................................................. 79
5.5 Mix problem: Application of integration .......................................................................... 80
Chapter 6 ............................................................................................................................................. 81
Multiple Integrals............................................................................................................................ 81
6.1 Double Integrals .................................................................................................................. 81
6.2 Triple integral...................................................................................................................... 87
6.3 Line integrals ....................................................................................................................... 88
6.4 Line integrals with Respect to Arc length ......................................................................... 89
6.5 Green’s Theorem ................................................................................................................ 90
6.6 Surface integral ................................................................................................................... 90
References .......................................................................................................................................... 117




iv
R133,00
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
samkelojayjay

Get to know the seller

Seller avatar
samkelojayjay University of South Africa (Unisa)
View profile
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
3 year
Number of followers
1
Documents
2
Last sold
-

0,0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions