100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary A level Differentiation Study Guide

Rating
-
Sold
1
Pages
8
Uploaded on
26-01-2022
Written in
2021/2022

Suitable for those studying A-level maths, I have created this study guide for those struggling to grasp the concept of differentiation. Included are clear diagrams and explanations, examples of questions being worked through, and practice questions (with solutions). The following topics are covered: First principles and proof Common derivatives Tangents, normals, maximum and minimum points Stationary points and points of inflection Product, quotient and chain rule Parametric differentiation Solutions to exercises are provided at the end of the pdf.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Study Level
Publisher
Subject
Course

Document information

Uploaded on
January 26, 2022
Number of pages
8
Written in
2021/2022
Type
Summary

Subjects

Content preview

Differentiatio
n
Study Pack by Lucy
Barnes
The gradient (slope) of a function is
known as the ‘rate of change’. For B
example, the gradient can tell us how
quickly Y increases, as X increases.
We already know how to calculate the
gradient of a linear function (Example
1.1).


Example 1.1: Find the gradient of the
function (shown on the right). A

Solution:
Let point A = (0.25,0.5) and B =
(0.5,1)
change∈ y
Gradient =
change∈ x
(1−0.5)
=
(0.5−0.25)
0.5
=
0.25
=2

This method is perfect when working with linear functions, as shown above. What if the
function isn’t linear? Let’s see y=x 2+2x+1 as an example…

Since the graph is not linear, the gradient isn’t
P2 constant, it changes depending on where we look.
L1 For example, if we draw a tangent at (x=-2), this
will have a different slope than the tangent at
(x=-0.5).
So how can we work out the gradient of the
L2 The gradient of point P1 is the gradient of
the tangent, T at point P1. Let P1 = (-0.5,
P3 0.25).
1) Let’s take the point P1 and connect it to
another point, P2 = (0,1), with line L1. We
can find the gradient, m1, of this line, using
the same method in example 1.1, m1=1.5.
P1 2) Now let’s repeat this process, connecting P1
to an even closer point, P3 = (-0.293,0.5),
with line L2. Now we can find the new
gradient, m2=1.207 (3dp).
T
3) As we get closer and closer to P1, the lines
we draw become more accurate to the
actual tangent at P1. Therefore, to find the
gradient of the tangent at P1, we need to
get extremely close to the point, where the
distance between P1 and Pn is as small as
possible.
1

, yDon’t forget to show
your workings! f(x)
To find the gradient at point (x,f(x)), h
f(x+h) needs to be as small as possible.
We say, ‘h tends to 0’.
The gradient can be calculated as
follows:

change∈ y
Gradient = lim ¿h →0 ¿
change ∈ x
f ( x+ h )−f ( x )
=lim ¿h →0 ¿
( x +h )−x
f ( x+ h )−f (x )
f(x) = lim ¿h →0 ¿
h
This method is differentiation, and the
result is called the derivative.
x dy Δ y
(0,0) x x+h The notation used is f’(x) or / /
h dx Δ x


f ( x+ h )−f (x )
f’(x) = lim ¿h →0
h
¿



Example 1.2: Use the formula to find the derivative of the following:
f(x) = 3x2 + 2x + 4
Here, we can’t substitute h=0 into
Solution: the equation because it’s impossible
to divide by 0.
f ( x+ h )−f ( x )
f’(x)= lim ¿h →0 ¿ We need to substitute the function in
h and simplify as much as we can.
=lim ¿h →0
( 3 ( x+ h )2+ 2 ( x +h ) + 4 ) −( 3 x 2 +2 x+ 4)
¿
h Now we can make h=0 to find the
2
=lim ¿h →0
6 xh+3 h +2 h derivative.
¿
h
=lim ¿h →0 6 x +3 h+2 ¿

f’(x) = 6x + 2

You may hear this method be called “differentiating from first principles”.

Now, we can find the gradient of any point on f(x), just substitute in the corresponding x
value!
At the point (2,20), f’(x) = 6(2) +2
Try these yourself!
1. Prove the following derivatives:
a) f(x) = 4x3 – 2x + 9 -> f’(x) = 12x2 -2
b) f(x) = 5x -> f’(x) = 5
c) f(x) = 1 -> f’(x) = 0
d) f(x) = sinx -> f’(x) = cosx (HINT: USE THE TRIGONOMETRIC IDENTITIES)

Solutions are at the end of the pdf.


2
R147,88
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
barneslucy2001

Get to know the seller

Seller avatar
barneslucy2001 De Montfort University
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
3 year
Number of followers
1
Documents
7
Last sold
3 year ago

0,0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions