ChapterFour
Continues Variable i take on any value in a given interval
Probability densityfunction
pay
A
Discrete Variable I Take on finite number of Values
Probability massfunction
pod
x
Cummulative DistributionFunction
stepfunction
Discrete
y PYay for Ryan
CDF
Properties FC o o continuous s Fal
Flo I
FLY isnondecreasing
, Probability density function continuesvariable I
fly
ddy
Fly Fly
co
2
Fly
g
f flyldy
ofPDF ffflyldy
Property PDFdoesnot havetobe continuous
Quartiles of distribution s
Thepthquantile of Y P isthesmallest valuesuchthat
Forcontinuous variable s PCYedp FyOp P
Theorem
i b
Playab fafeyldy
ExpectedValues
Discrete variable ELY dyPly
continuous variable ELY f yflyldy
,Function of a randomvariable s EEgly
f glylfoyldy
VLy and Ely
ECO C Vly EL ut
ly
EL cgey C EEgly
Vig ELY CELYN
EEgilgit grilyn ELgicy.pt tEIgneyn Vlaytb a var y
Uniform Distribution t
Y Unit0,02 E Y VCU andfell are onformulasheet
Normal Distribution 1
Y N M04 FLY VCU andfell are onformulasheet
Wecan alwaystransform a normal random variable to a standard normal
Variable usingthe following relationship
2 Y
,Gamma Distribution
Y gammalaB FLY VCU andfell are onformulasheet
Gammafunction a
f y
é dy
Chisquare Gamma Distribution
Y is chisquare if it is a gamma random
variable with a 2 and13 2
degrees of freedom
ELY VCU andfell are onformulasheet
Wecan convert a gamma variable to chi
square andthen usethetablesto find probability
Y gamma a B I 4 43 Kaa
Exponential Distribution
Y exp B FLY VCU andfell are onformulasheet
Beta Distribution s
FLY VCU andfell are onformulasheet
Y Beta QB
Bla 13 CH B
Betafunction 2 13
,Momentsandmoment functions
generating
TheKthnon centralmomentof a random variableY I firstnoncentral Mi M E Y
Mk ELY
The Kth central moment of a random variableY I first central ELYMI EY n o
My EL Y a I Second central Varcy
If two variables havethesamemomentsthen they havethe same PDFand Cbt
Momentgeneratingfunctions
Mct E et k Mt ECety
ety.pe
continuous met ECety JetYfogdy
Mdtmet to
Mk
Moment functionof a function of a variable
generating
If Yis a random variableand
galis a function of Ythen the moment generating function
for y is
g
Let.ge
f et.ge
fogdy
, TchebysheffsTheorem
Let Y be a random variable withfinitemean u and variance o then
for any K10
P Y M L KO I K2 OR PC Y MI KO f k
Gives probability that is ko unitsfrom mean true for distribution
y any
ChapterFive Bivariatedistributions
Distributions with two random variables
Discrete variables 1
equivalentto pmf
Joint bivariate probability function Ply ya PYagi Ya ya
Bivariate CDF
Fly ya Ey Ily PCtita
NB 1
Paige 421yd Flyya