1.Introduction
Machinelearning
Givingcomputerstheabilitytolearnwithoutexplicitlyprogrammingthem.
Supervisedlearning
Whenacomputerlearnsusinglabeleddata.Theinputisfeaturesandtheoutputisthe
predictedlabel.
● Classification
● Regression
Unsupervisedlearning
Whenacomputeractuallylearnsusingu nlabeleddata.Theinputisclassifiedintooneormore
categories.
● Clustering:inputdividedintogroups
● Dimensionalityreduction:visualizedatawithtoomany
● Anomaly&noveltydetection
● Associationrulelearning
CRISP-DM
1
, Datamining
1. DefineGoals:businessanddataminingexpertshavetodefinegoalsandmeasuresof
success
2. ObtainModel:pre-processthedataandapplydataminingalgorithms
3. EvaluateResults:usepre-specifiedmeasurestoevaluatethemodels
4. Deploy:deploythemodeliftheevaluationissuccessful
Dependentvariable
Avariablethatd
ependsonothervariables.
Independentvariable
Avariablethatd
oesnotdependonothervariables.
Confusionmatrix
PREDICTION
A True False
C
T
True TruePositive FalseNegative
U
A
L False FalsePositive TrueNegative
Precision
Thefractionofrelevantinstancesamongtheretrievedinstances.
true positives
precision = true positives + f alse positives
Recall
Theabilityofaclassifiertofindallpositiveinstances.
true positives
recall = true positives + f alse negatives
2
Machinelearning
Givingcomputerstheabilitytolearnwithoutexplicitlyprogrammingthem.
Supervisedlearning
Whenacomputerlearnsusinglabeleddata.Theinputisfeaturesandtheoutputisthe
predictedlabel.
● Classification
● Regression
Unsupervisedlearning
Whenacomputeractuallylearnsusingu nlabeleddata.Theinputisclassifiedintooneormore
categories.
● Clustering:inputdividedintogroups
● Dimensionalityreduction:visualizedatawithtoomany
● Anomaly&noveltydetection
● Associationrulelearning
CRISP-DM
1
, Datamining
1. DefineGoals:businessanddataminingexpertshavetodefinegoalsandmeasuresof
success
2. ObtainModel:pre-processthedataandapplydataminingalgorithms
3. EvaluateResults:usepre-specifiedmeasurestoevaluatethemodels
4. Deploy:deploythemodeliftheevaluationissuccessful
Dependentvariable
Avariablethatd
ependsonothervariables.
Independentvariable
Avariablethatd
oesnotdependonothervariables.
Confusionmatrix
PREDICTION
A True False
C
T
True TruePositive FalseNegative
U
A
L False FalsePositive TrueNegative
Precision
Thefractionofrelevantinstancesamongtheretrievedinstances.
true positives
precision = true positives + f alse positives
Recall
Theabilityofaclassifiertofindallpositiveinstances.
true positives
recall = true positives + f alse negatives
2