2.1. Aplicaciones Lineales.
Si 𝑉y 𝑊son dos espacios vectoriales sobre un mismo cuerpo 𝐾, llamamos aplicación lineal
de 𝑉en𝑊a una función 𝑓: 𝑉 → 𝑊que verifica:
𝑓(𝑢 + 𝑣) = 𝑓(𝑢) + 𝑓(𝑣)
𝑓(λ𝑣) = λ𝑓(𝑣)
Si 𝑉 = 𝑊entonces la aplicación lineal se llama endomorfismo.
Propiedades.
Si 𝑓: 𝑉 → 𝑊es una aplicación lineal sobre un cuerpo 𝐾, se tiene:
1. 𝑓(𝑢 − 𝑣) = 𝑓(𝑢) − 𝑓(𝑣)
2. 𝑓(0𝑣) = 0𝑤
Caracterizaciń de una aplicación lineal.
𝑓: 𝑉 → 𝑊es una aplicación lineal si y sólo si, ∀𝑢, 𝑣 ∈ 𝑉; ∀λ, µ ∈ 𝐾
𝑓(λ𝑢 + µ𝑣) = λ𝑓(𝑢) + µ𝑓(𝑣)
Núcleo e Imagen de una aplicación lineal.
Definición 1. Sea 𝑓: 𝑉 → 𝑊una aplicación lineal. Llamamos Núcleo de 𝑓(𝐾𝑒𝑟𝑓) al conjunto
de vectores de 𝑉cuya imagen es el elemento neutro de 𝑊.
𝐾𝑒𝑟𝑓 = {𝑤 ∈ 𝑊|∃𝑣 ∈ 𝑉 𝑡. 𝑞. 𝑓(𝑣) = 𝑤}
Definición 2. Llamamos Imagen de f (Imf) al conjunto de vectores de W que son imágenes
bajo f de vectores de V.
𝐼𝑚𝑓 = {𝑤 ∈ 𝑊|∃𝑣 ∈ 𝑉 𝑡. 𝑞. 𝑓(𝑣) = 𝑤}
Teorema 1. Si 𝑓: 𝑉 → 𝑊es una aplicación lineal entre dos espacios vectoriales sobre un
cuerpo 𝐾, se tiene que:
1. 𝐾𝑒𝑟𝑓 es un subespacio vectorial de 𝑉
2. 𝐼𝑚𝑓 es un subespacio vectorial de 𝑊.
{ }
Teorema 2. Dada una aplicación lineal 𝑓: 𝑉 → 𝑊y un sistema generador de 𝑉, 𝑣1, 𝑣2,..., 𝑣𝑛 ,
{ }
se tiene que los vectores 𝑓(𝑣1), 𝑓(𝑣2),..., 𝑓(𝑣𝑝) forman un sistema generador de 𝐼𝑚𝑓.
Teorema 3. Sea 𝑓: 𝑉 → 𝑊 una aplicación lineal donde 𝑉es un espacio vectorial de dimensión
finita. Entonces se verifica. 𝑑𝑖𝑚𝑉 = 𝑑𝑖𝑚𝐾𝑒𝑟𝑓 + 𝑑𝑖𝑚𝐼𝑚𝑓
Teorema 4. Sea 𝑓: 𝑉 → 𝑊una aplicación lineal. Entonces:
{ }
1. 𝑓es inyectiva si y sólo si 𝐾𝑒𝑟𝑓 = 0𝑣 si y sólo si 𝑑𝑖𝑚 𝐾𝑒𝑟𝑓 = 0
2. 𝑓 es sobreyectiva si y sólo si 𝐼𝑚𝑓 = 𝑊
Matriz de una aplicación lineal.