100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Other

Samenvatting Analyse

Rating
3,0
(1)
Sold
10
Pages
16
Uploaded on
17-01-2015
Written in
2013/2014

Een overzicht van de belangrijke begrippen en stellingen in de (pure) analyse. Het is gebaseerd op het vak Inleiding Analyse aan de UU en het bijbehorend dictaat van E. van der Ban.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 17, 2015
Number of pages
16
Written in
2013/2014
Type
Other
Person
Unknown

Content preview

Stellingen, lemma’s en definities dictaat

Hoofdstuk 1, Limieten en continuı̈teit

1.1 De afstand in Rn

Lemma 1.2 (Ongelijkheid van Cauchy-Schwarz)
Voor ieder tweetal x, y ∈ Rn geldt:
| < x, y > | ≤ ||x||||y||
(Deze ongelijkheid is een gelijkheid dan en slechts dan als x en y lineair onafhankelijk zijn).

Lemma 1.3
Voor alle x, y ∈ Rn en λ ∈ R geldt:
(a) ||x|| ≥ 0 en ||x|| = 0 ⇐⇒ x = 0
(b) ||λx|| = |λ|||x||
(c) ||x + y|| ≤ ||x|| + ||y|| (driehoeksongelijkheid)

Gevolg 1.5
(a) (’Herhaalde driehoeksongelijkheid’) Voor alle m ≥ 2, x1 , ..., xm ∈ Rn geldt:

||x1 + ... + xm || ≤ ||x1 || + ... + ||xm ||

(b) (’Omgekeerde driehoeksongelijkheid’) Voor alle x, y ∈ Rn geldt:

||x − y|| ≥ |||x|| − ||y|||

Lemma 1.7 Voor elke x ∈ Rn geldt: Pn
(a) |xi | ≤ ||x|| voor alle 1 ≤ i ≤ n. (b) ||x||leq i=1 |xi |. Opmerking: hiervoor zijn alleen algemene eigen-
schappen van de norm (1.3) gebruikt, dit geldt derhalve voor elke norm.



1.2 Limieten van functies

Definitie 1.12
Laat f : Rn → Rm een functie zijn, en a ∈ Rn en b ∈ Rm punten. Men zegt dat f in a de limiet b (notatie:
limx→a f (x) = b) als voor iedere  > 0 een δ > 0 bestaat met de volgende eigenschap: Als x ∈ Dom(f ) en
d(x, a) < δ, dan d(f (x), b) < 

Lemma 1.16
Zij f : Rn → Rm , a ∈ Rn en b ∈ Rm . Dan zijn de volgende beweringen equivalent:
(a) limx→a f (x) = b;
(b) limx→a d(f (x), b) = 0

Definitie 1.17
Is a ∈ Rn en r > 0, dan definieren we de (open) bol met middelpunt a en straal r door:

B(a; r) = {x ∈ Rn | d(x, a) < r}


Definitie 1.12’
Met de definitie van bollen kunnen we de limiet-definitie als volgt herschrijven:
Voor elke  > 0, bestaat er een δ > 0, zodat f (Dom(f ) ∩ B(a; δ)) ⊂ B(b; ).

Opmerking 1.19
Er kan zich de merkwaardige situatie voordoen dat een functie f : Rn → Rm meer dan één limiet heeft voor
x → a, Dit gebeurt as er een δ > 0 bestaat zodat B(a; delta) ∩ Dom(f ) = ∅.
Bewering: Veronderstel dat er een δ > 0 bestaat zo dat B(a; δ) ∩ Dom(f ) = ∅. Dan geldt dat voor elke
b ∈ Rm dat limx→a f (x) = b.



1

,Definitie 1.20
Zij A ⊂ Rn . Onder een limietpunt van A verstaan we een punt a ∈ Rn met de volgende eigenschap:
voor alle δ > 0 geldt: B(a; δ) ∩ A 6= ∅

Lemma 1.22 (eenduidigheid van limiet)
Zij f : Rn → Rm een functie en a een limietpunt van Dom(f ). Veronderstel dat b, c ∈ Rm en dat
limx→a f (x) = b en limx→a f (x) = c. Dan geldt b = c.



1.3 Rekenregels voor limieten

Lemma 1.25 (Somregel)
Laat f : Rn → Rm en g : Rn → Rm functies zijn, en a ∈ Rn en b, c ∈ Rm punten.
Als limx→a f (x) = b en limx→a g(x) = c, dan limx→a (f (x) + g(x)) = b + c.

Lemma 1.26 (Productregel)
Laat f : Rn → R en g : Rn → Rm functies zijn, en a ∈ Rn , λ ∈ R, b ∈ Rm .
Als limx→a f (x) = λ en limx→a g(x) = b, dan limx→a f (x)g(x) = λb.

Lemma 1.28 (Quotientregel)
Laat f : Rn → R een functie, a ∈ Rn en λ ∈ R, λ 6= 0.
1
Als limx→a f (x) = λ, dan limx→a f (x) = λ1

Lemma 1.30
Laat f : Rn → Rm een functie zijn en a ∈ Rn en b ∈ Rm punten. Dan zijn de volgende beweringen equiva-
lent:
(a) limx→a f (x) = b;
(b) limx→a fi (x) = bi voor alle 1 ≤ i ≤ m

Lemma 1.32
Laat f : Rn → Rm en g : Rm → Rp functies zijn, en a ∈ Rn , b ∈ Rm en c ∈ Rp punten.
Als limx→a f (x) = b en limy→b g(y) = c dan limx→a g(f (x)) = c.



1.4 Limieten en ongelijkheden

Lemma 1.33
Laat D ⊂ Rn zijn en a een limietpunt van D. Laat f, g : D → R functies zijn en veronderstel dat
limx→a f (x) = b en limx→a g(x) = c met b, c ∈ R.
Als f (x) ≤ g(x) voor alle x ∈ D dan geldt ook: b ≤ c.
Opmerking: strikte ongelijkheden blijven niet altijd behouden. Neem als voorbeeld D =]0, ∞] en f (x) = 0,
g(x) = x.

Lemma 1.35 (Insluitstelling)
Laat D ⊂ Rn en f, g, h : D → R een drietal functies met f (x) ≤ g(x) ≤ h(x) voor alle x ∈ D. Veronderstel
dat a ∈ Rn en dat er een λ ∈ R bestaat met limx→a f (x) = λ en limx→a h(x) = λ.
Dan geldt ook limx→a g(x) = λ.



1.5 Continuiteit

Definitie 1.38
Een functie f : Rn → Rm heeft continu in een punt a ∈ Rn als a ∈ Dom(f ) en bovendien: limx→a f (x) =
f (a).
De functie f heet continu op een verzameling A ∈ Rn als f continu is in elk punt a ∈ A. De functie f heeft
continu als hij continu is op Dom(f ).




2

, Lemma 1.41
Zij f = (f1 , ..., fm ) : Rn → Rm een functie en a ∈ Rn een punt. Dan zijn de volgende uitspraken gelijk-
waardig:
(a) De functie f is continu in a;
(b) Voor iedere 1 ≤ i ≤ m is de funcite fi continu in a.

Lemma 1.43
Laat f, g : Rn → Rm functies zijn en a ∈ Rn een punt. Als f en g continu zijn in a, dan is de somfunctie
f + g dat ook.

Lemma 1.44
Laat f : Rn → R en g : Rn → Rm functies zijn en a ∈ Rn een punt.
(a) Als f en g continu in a dan is f g dat ook.
(b) Als f continu is in a en bovendien geldt dat f (a) 6= 0, dan is ook de functie 1/f : x → 1/f (x) continu in a.

Lemma 1.45
Iedere rationele functie op Rn is continu op zijn domein.

Lemma 1.47
Laat f : Rn → Rm en g : Rm → Rp functies zijn.
(a) Is f continu in a en g continu in f (a), dan is de samenstelling g ◦ f continu in a.
(b) Zijn f en g continu op hun domein, dan is ook g ◦ f continu op zijn domein.



1.6 Toepassing: rekenregels voor differentieren

Veronderstel dat I ⊂ R een interval met meer dan één punt.
Definitie 1.49
Zij f : I → Rn en a ∈ I. De functie f heeft differentieerbaar in a als er een vector v ∈ Rn bestaat met:

f (x) − f (a)
limx→a =v
x−a

Lemma 1.53
Laat f : I → Rn differentieerbaar zijn in a. Dan is f continu in a.

Lemma 1.54
Zij f = (f1 , ..., fn ) : I → Rn een functie en a ∈ I. De functie f is differentieerbaar in a dan en slecht dan
als elke van de functies fi (1 ≤ i ≤ n) differentieerbaar is in a. Is f differentieerbaar in a dan geldt:

f 0 (a) = (f10 (a), ..., fn0 (a))


Lemma 1.55
Laat f, g : I → R differentieerbaar zijn in a ∈ I, zij λ ∈ R. Dan zijn ook de functies f + g, f g en λf
differentieerbaar in a. Voorts geldt:
(a) (f + g)0 (a) = f 0 (a) + g 0 (a)
(b) (f g)0 (a) = f 0 (a)g(a) + f (a)g 0 (a)
(c) (λf )0 (a) = λf 0 (a)
Is bovendien g(a) 6= 0 dan is ook de functie f /g differentieerbaar in a, en er geldt:
 0 0
(a)g 0 (a)
(d) fg (a) = f (a)g(a)−f g(a)2

Stelling 1.56 (De kettingregel)
Zij f : I → R, a ∈ R, J ⊂ R een interval dat f (I) bevat en g : J → R. Als f en g differentieerbaar zijn in
a, resp. f (a), dan is g ◦ f differentieerbaar in a, met afgeleide:

(g ◦ f )0 (a) = g 0 (f (a))f 0 (a)




3

Reviews from verified buyers

Showing all reviews
5 year ago

3,0

1 reviews

5
0
4
0
3
1
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
RichardSchoonhoven Universiteit Utrecht
Follow You need to be logged in order to follow users or courses
Sold
60
Member since
10 year
Number of followers
34
Documents
18
Last sold
10 months ago

3,3

6 reviews

5
1
4
2
3
2
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions