100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Module 3.1.1 Chapter 7 Periodicity

Rating
-
Sold
-
Pages
2
Uploaded on
19-07-2021
Written in
2020/2021

notes on: 1 - periodic table 2 - ionisation energies 3 - bonds and structures

Institution
Course








Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Study Level
Publisher
Subject
Course

Document information

Uploaded on
July 19, 2021
Number of pages
2
Written in
2020/2021
Type
Summary

Subjects

Content preview

7.1 periodic table
Trend across - What period they are shows sub shell, 1s – 2s – 2p – 3s – 3p – 4s – 3d – 4p. (s-2, p-6, d-10, f – 14)
a period - Filled in order depending on period except 4.
- P4, 3d is involved but only n=4 so only 4s and 4p are occupied
blocks - 1-2 are s, 3-12 are d, 13-18 minus He are p, 4-17 on bottom separate block are f blocks.
- Correspond to highest energy level subshell.
7.2 ionisation energies
IE - measures how easily an atom loses electrons to form positive ions.
- 1st IE is E required to remove one electron from 1 mol of gaseous atom to form 1 mole of 1+ ion atom.
- 1st IE lost is from highest E level with least attraction with nucleus – furthest away from nucleus.
Factors - Atomic radius – greater distance out outer e- and nucleus = less nuclear attraction and easy to lose as
affecting IE force of attraction falls off.
- Nuclear charge – more p+ = more attraction for p+ and e-.
- E- shielding – inner shell e- repels outer shell = shielding effect = decrease in attraction in e- and p+.
2nd IE  More powerful than 1st as the 2e- turning to 1e- keeps it attracted to p+ = distance decreases so
nuclear attraction on 1e- increases so more IE needed to remove e-.
 E required to remove 1e- from each ion in 1 mol of gaseous atom forming 2+ ion atom.
Successive - E required to remove 1e- from 1 mol of gaseous atom to form 1 mol of gaseous 1+ ion atom.
ionisation - Large difference in IE= e- removed from higher shell and 2e- removed from closer to nucleus.
- Bigger the difference between points = more E required to remove e- = another energy level.
- On a table, the big jump after IE – what group it is, if IE after a jump is consistent, count = group no.
Trends in - General increase in 1st IE across each period = shows increase as you go along the elements on graph.
1st IE 1) nuclear charge increases = nuclear attraction increases as atomic radius decreases = same shell = IE increase.
- Sharp decrease at the end of each period and start of next, increasing for that period again.
1) a new shell – atomic radius increase = nuclear charge and attraction to decrease = IE to rapidly decrease.
- 1st IE decreases down a group – nuclear charge increases but increased radius + shielding = decrease
nuclear attraction.
- Jump to different sub shell = slight decrease – adding e- to each orbital and increases to fill up.
1) 2s e- is harder to remove as there's less = stronger attraction so 2p e- easier to remove.
7.3 bonds and structure
Metallic - At room temp – most metals are solid but all conduct electricity.
bonding - atom donates outer shell e- to pool of delocalised so cations are in nucleus + inner = strong
electrostatic attraction between cations and delocalised.
- Cations are in fixed structure = giving shape, delocalised move around – all in giant metallic lattice.
Properties - Strong metallic attraction between cations and delocalised = high electrical conductivity therefore,
of metals high M.P and B.P.
Electrical conductivity -
- In solid and liquid states so when voltage is applied = delocalised move through and carry charge.
Melting and boiling points -
- High m.p and b.p due to strength of metallic bonds in lattice so high E required to bonds.
Solubility -
- Do not dissolve but interaction between polar solvents and metal can happen.
Giant - Can be strong covalent bonds = giant covalent lattice – non-metallic.
covalent - Can be tetrahedral – 109.5 by e- pair repulsion - stable.
structure Mp and bp -
- High as covalent bonds are strong, so E required to overcome bonds is high.
Solubility -
- Insoluble in most solvents – covalent bond too strong to be broken in solvent.
Electrical conductivity-
- Non-conductors of electricity - diamond and silicon as all 4 e- are occupied.
- Conductors of electricity – graphene and graphite as each have delocalised e-.
examples Carbon -
- 3 e- used in covalent bonding so 1e- is used as delocalised e- shared by all atoms.
- Planar hexagonal layers = good electrical conductors.
Graphene -
- Single layer of graphite, hexagonal carbon with strong covalent bonds
- Good electrical conductivity and thinnest + strongest material.
Graphite -
R127,59
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
saimabegum

Document also available in package deal

Get to know the seller

Seller avatar
saimabegum Mulberry UTC
Follow You need to be logged in order to follow users or courses
Sold
1
Member since
4 year
Number of followers
1
Documents
13
Last sold
4 year ago

0,0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions