Circuits and Systems
po po po
SolutionManual
Hooman Darabi
po
,Solutions to Problem Sets p o p o p o
The selected solutions to all
po po p o po p o 12 chapters problem sets are presented in this
p o p o p o p o po po po
manual. The problem sets
p o p o po p o p o depict examples of practical applications of the
p o p o p o p o p o p o
concepts described in the
p o p o p o p o po book, more detailed analysis of some of the
p o p o p o p o p o p o p o
ideas, or in some cases
p o p o p o p o p o p o present a new concept.
p o p o po
Note that selected problems have been
po p o p o p o po p o given answers already in the book.
p o p o po p o po
, 1 Chapter One po
1. Using spherical coordinates, find the capacitance formed by two
p o p o p o p o p o p o p o p o
concentric spherical conducting shells of radius a, and b. What is
p o po p o po p o p o p o p o p o p o p o
the capacitance of a metallic marble with a diameter of 1cm in free
p o p o p o p o po po po po p o p o p o p o p o
space? Hint: let 𝑏 → ∞, thus, 𝐶
p o p o p o p o p o p o p o p o
= 4𝜋𝜀𝜀0𝑎 = 0.55𝑝𝐹.
p o p o p o
Solution: Suppose the inner sphere has a surface charge density of +𝜌𝑆.
p o po p o p o p o p o p o p o p o po p o
The outer surface charge density is negative, and proportionally smaller (by
p o p o po po po po po po po po po
(𝑎/𝑏)2) to keep the total charge the same.
po po po po p o p o p o p o
-
+
+S + -
- + a
b
+
-
From Gauss’s law: po po
ф𝐷 ⋅ 𝑑𝑆 po p o p o = 𝑄𝑄 po p o = +𝜌𝑆4𝜋𝑎2
po
𝑆
Thus, inside the sphere (𝑎
po po p o p o
p o≤ 𝑟 p o p o
≤ 𝑏): p o
𝑎2
𝐷 = 𝜌𝑆 𝑎𝑟 p o
𝑟2 o uter
p o p o p o
p o
Assuming a potential of 𝑉0 betw𝑎 e 1e n the 𝑎i2nn er and
po po
𝜌 s2ur f a1ces, w1e have:
po po po pon npo po n pon po po po n po n p o po po
𝑉 = − 𝜌 𝑑𝑟 𝑆 𝑎 p o po p o p o p o
= p o
0 𝑆 ( − ) p o p o p o
2
𝑏 𝑟 𝜖 𝑎 𝑏
Thus: 𝜖
𝜌𝑆4𝜋𝑎2 = 4𝜋𝜖
𝑄𝑄
𝐶 = 𝑉 = 𝜌 1 1 1 p o 1 p o p o po ponn po p o
−
p o
𝑆
𝜖 𝑎 (𝑎 − ) 𝑎
0 2
𝑏 p o
p o
𝑏 p o
1
In the case of a metallic marble, 𝑏
po p o → ∞,
p o 𝑎.
p o po
= p o p o p o p o p o
and hence: 𝐶
p o p o p o Letting × po
p o n pon p o
36𝜋
= 4𝜋𝜀𝜀0 p o 𝜀𝜀0
−9 5
10 , and 𝑎 = 0.5𝑐𝑚,
po p o
𝑝𝐹
p o
= 0.55𝑝𝐹.
p o p o
p o p o p o p o
9
it yields
p o p o
2. Consider the parallel plate capacitor containing two different dielectrics. Find
po po po po po po po po po