100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Class notes

Cem1000W - Phases of Matter and Mixtures notes

Rating
-
Sold
-
Pages
19
Uploaded on
18-05-2024
Written in
2020/2021

This is a comprehensive and detailed note on Phases of Matter and Mixtures for Cem1000w. Quality stuff!! U'll need it!!

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Course

Document information

Uploaded on
May 18, 2024
Number of pages
19
Written in
2020/2021
Type
Class notes
Professor(s)
Prof. smith
Contains
All classes

Subjects

Content preview

Phases of Matter

The role of molecular forces

 In all phases, intramolecular forces (chemical bonding forces are the same)  influence
chemical properties
 Intermolecular forces: the electrostatic forces between molecules/particles and kinetic
energy are responsible for physical properties of the phase/phase changes

Kinetic-Molecular view

 Phase depends on:
o Ep, potential energy of intermolecular forces
q1 x q2
Attraction according to Coulomb’s law: E ∝
distance
o Ek, kinetic energy E ∝ average particle speed E ∝ T (abs. temp)

Macroscopic properties of phases

State Shape/volume Compressibility Ability to flow
Gas Conforms to shape High High
and volume of
container
Liquid Conforms to shape of Very low Moderate
container, volume
limited by surface
Solid Maintains its own Almost none Almost none
fixed shape


Ideal gas Real gas Liquid Solid
Molecules act n2 a Molecules stick to one Molecules pack
independently (P+ )(V- another closely together, often
V2
PV=nRT nb)=nRT Radial dist. function crystalline
Periodic function


Intermolecular interactions increases

Kinetic energy increases

Phase Changes

 Determined by intermolecular forces and kinetic energy.
 An increase in Ek allows particles to overcome attractive intermolecular forces and vice versa
 Enthalpy changes occur with phase change
 Enthalpy: A thermodynamics quantity that is the sum of the internal energy plus the product
of the pressure and volume

Gas to liquid Condensation/liquefaction dew
Liquid to gas vaporisation Boiling water steam
Gas to solid deposition frost
Solid to gas sublimation Evaporation of CO2
Liquid to solid Freezing Water  ice

,Solid to liquid Melting/fusion Ice  water




Quantitative Aspects of Phase Changes

 Within a phase, heat flow is accompanied by a change temperature, since the average Ek of
the particles changes.
 q=(amount) x (heat capacity) x ∆ T =n csubstance, phase ∆ T
 During a phase change, heat flow occurs at constant temperatures as the average distance
between particles changes.
 q=n x ∆ H of phase change



Water cooling curve

1. Gas cools: As T decr, Ek
decr, molecular speed
decr and
intermolecular
attractions become
more important.
2. Gas condenses:
Molecules aggregate
into droplets, then
bulk into liquid. T and
Ek remain constant.
3. Liquid cools: T decr, Ek
decr, molecular speed
decr.
 q= n x c(g) x ∆ T
 q= n x (- ∆ H ° vap )
 q=n x c(l) x ∆ T

4. Liquid freezes: At freezing T, intermolecular attractions overcome molecular motion and
molecules freeze into crystal structure. During freezing, T and average Ek remain
constant
5. Solid cools: Molecules can only vibrate in place. Further cooling reduces the average
speed of this vibration.
 q= n x (- ∆ H ° fus )
 q= n x c(l) x ∆ T

,  q for sum of stages 1-5= Hess’s Law



Vapour Pressure

 vapour pressure: the pressure exerted by the vapour on the liquid
 The pressure increases until eqm. Is reached: at eqm. pressure is constant
 Rate vap > Rate cond  At eqm: Rate vap=Rate cond

Liquid-Gas Equilibria

 In a closed system, phase changes are usually reversible.
 The system reaches a state of dynamic equilibrium, where molecules are leaving and
entering the liquid at the same rate.
 Some fast moving liquid molecules escape into gas phase.
 These gas molecules exert pressure on the liquid surface.
 The pressure increases as more molecules enter gas phase.
 Some gas molecules collide with the surface and stick to it, re-entering the liquid phase.
 Eventually, rate of molecules evaporating equals rate of molecules condensing.

Temp and Intermolecular interactions affect Vapour Pressure

 As temperature increases, the fraction of molecules with enough energy to enter the vapour
phase increases and the vapour pressure increases: T incr. P incr.
 The weaker the intermolecular forces, the more easily particles enter the vapour phase, and
higher the vapour pressure: IMFs decr. P incr.
The Effect of temperature on the distribution of molecular speeds

 Vapour pressure increases as temperature increases.

Intermolecular interactions affect Vapour Pressure

 Vapour pressure decreases as the strength of IMFs increases.
 Vapour pressure is characteristic for each substance.
 Average Ek at specific T is the SAME for all substances.
 However, the stronger the IMFs the more energy is required to overcome them and less
molecules leave the liquid, hence vapour pressure decreases.
Clausius-Clapeyron Equation

 Relates vapour pressure and temperature.
 The non-linear P vs T relation can be expressed linearly as lnP vs 1/T
 Straight line form:
1
T
)+C
−∆ Hvap
lnP= ¿
R
−∆ Hvap
Where: slope= (can be used to calculate heat of vaporisation from slope)
R
A steeper slope indicates a larger ∆ Hvap and indicates stronger IMFs
 When the vapour pressures at two different temperatures are known, use the 2 point form:

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
anyiamgeorge19 Arizona State University
Follow You need to be logged in order to follow users or courses
Sold
60
Member since
2 year
Number of followers
16
Documents
7001
Last sold
1 week ago
Scholarshub

Scholarshub – Smarter Study, Better Grades! Tired of endless searching for quality study materials? ScholarsHub got you covered! We provide top-notch summaries, study guides, class notes, essays, MCQs, case studies, and practice resources designed to help you study smarter, not harder. Whether you’re prepping for an exam, writing a paper, or simply staying ahead, our resources make learning easier and more effective. No stress, just success! A big thank you goes to the many students from institutions and universities across the U.S. who have crafted and contributed these essential study materials. Their hard work makes this store possible. If you have any concerns about how your materials are being used on ScholarsHub, please don’t hesitate to reach out—we’d be glad to discuss and resolve the matter. Enjoyed our materials? Drop a review to let us know how we’re helping you! And don’t forget to spread the word to friends, family, and classmates—because great study resources are meant to be shared. Wishing y'all success in all your academic pursuits! ✌️

Read more Read less
3.4

5 reviews

5
2
4
0
3
2
2
0
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions