100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Wiskunde voor bedrijfskundigen I Bewijzen

Rating
4.0
(8)
Sold
50
Pages
13
Uploaded on
28-12-2018
Written in
2018/2019

Uitgetypt document van alle te kennen bewijzen van wiskunde 1A en wiskunde 1B (Academiejaar ). Gegeven door prof. Philippe Carette.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
December 28, 2018
File latest updated on
February 28, 2019
Number of pages
13
Written in
2018/2019
Type
Summary

Subjects

Content preview

.




Wiskunde voor bedrijfskundigen I
Bewijzen




Handelswetenschappen
Academiejaar 2018-2019

,Bewijzen
b D
1. Kwadratische functie: y = ax 2 + bx + c; Bewijs topformule: ( − 2a , − 2a ).....................................1

2. Grondtalveranderingseigenschap: logaritmen. loga x = loga b ∙ logb x ...................................................1

3. Verband tussen expa en exp1/a en loga en log1/a ..............................................................................................2

π
4. Ongelijkheid sinus-tangens: ∀x ∈ ] 0, 2 [ ∶ sin x < x < tan x ....................................................................3

sin x
5. cos x < x
< 1 ..................................................................................................................................................................3

sin x
6. Toepassing knijpstelling: lim x
= 1 ...................................................................................................................4
x→0

f′(x)
7. Stelling: ( ln |f(x)| )′ = f(x)
als f(x) ≠ 0 ..................................................................................................................4

8. Continuïteit: lim f(x) = f(x0 ). ....................................................................................................................................5
x→x0

f′(x0)
9. Basisformule elasticiteit: εf (x0 ) = f(x0 )
∙ x0 ........................................................................................................5

10. Grafische betekenis van εf (x0 ) / “Marshall criterium “ /

Vergelijk raaklijn R door het punt (x0 , f(x0 )) .....................................................................................................6

11. Verband tussen O′(p) en prijselasticiteit van de vraag: O = p ∙ V(p) ....................................................7

12. Elasticiteit: εg (x) = p ∙ εf (x).........................................................................................................................................7

13. Machtsfunctie elasticiteit: Als f(x) = ax b (a, b ∈ ℝ en a ≠ 0), dan εf = b ........................................8

14. Exponentiële functie elasticiteit: als f(x) = aebx (a, b ∈ ℝ en a ≠ 0), dan εf = bx.........................8

15. Productregel elasticiteit: εf∙g = εf + εg ...................................................................................................................9

16. Quotiëntregel elasticiteit: εf/g = εf − εg ................................................................................................................9

17. Kettingregel elasticiteit: als h(x) = g(u) met u = f(x), dan εh (x) = εg (u) ∙ εf (x) ........................10

f(x)
18. Bewijs van a = lim x
............................................................................................................................................10
x→+∞

19. Bewijs van b = lim (f(x) − ax) ...........................................................................................................................11
x→+∞

, 𝑏 D
❖ Kwadratische functie: 𝑦 = 𝑎𝑥 2 + 𝑏𝑥 + 𝑐, Bewijs topformule: ( − 2𝑎 , − 2𝑎 )

Herschrijf gedaante 2 als gedaante 1: zoek 𝑝 en 𝑞 zodat de gelijkheid
𝑎𝑥 2 + 𝑏𝑥 + 𝑐 = 𝑎(𝑥 − 𝑝)2 + 𝑞 opgaat voor alle 𝑥 ∈ ℝ.

𝑎𝑥 2 + 𝑏𝑥 + 𝑐 = 𝑎(𝑥 − 𝑝)2 + 𝑞 rechterlid uitwerken
= 𝑎(𝑥 2 − 2𝑝𝑥 + 𝑝2 ) + 𝑞
= 𝑎𝑥 2 − 2𝑎𝑝𝑥 + 𝑎𝑝2 + 𝑞


𝑎𝑥 2 = 𝑎𝑥 2 𝑏𝑥 = −2𝑎𝑝𝑥 𝑐 = 𝑎𝑝2 + 𝑞
𝑏 = −2𝑎𝑝 𝑞 = 𝑐 − 𝑎𝑝2
𝑏 𝑏
𝑝 = − 2𝑎 𝑞 = 𝑐 − 𝑎(− 2𝑎)2
𝑏2
𝑞 = 𝑐 − 𝑎 ∙ 4𝑎 2
4𝑎𝑐−𝑏 2
𝑞 =
4𝑎

𝐷
𝑞 = −
4𝑎



❖ Grondtalveranderingseigenschap logaritmen. loga x = loga b ∙ logb x

In de plaats van rechtstreeks van 𝑎
∀𝑥 ∈ ℝ+
0 ∶ log𝑎 𝑥 = log𝑎 𝑏 ∙ log𝑏 𝑥 naar 𝑥 te gaan, doen we dit met een
tussen stap, namelijk 𝑏
log𝑎 𝑥 = log𝑎 𝑏 ∙ log𝑏 𝑥 = 𝒚


Te bewijzen: 𝒂𝒚 = 𝒙 (via definitie 𝐥𝐨𝐠 𝒂 )

log𝑏 𝑥 Toepassen eigenschap
𝑎𝑦 = 𝑎( log𝑎 𝑏 ∙ log𝑏 𝑥 ) = (𝑎log𝑎 𝑏 ) log 𝑥
→ 𝑎 𝑎 =𝑥
= 𝑏log𝑏 𝑥

= 𝑥


Herschrijven log𝑎 𝑥
log𝑏 𝑥 =
log𝑎 𝑏




1
$3.59
Get access to the full document:
Purchased by 50 students

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Reviews from verified buyers

Showing 7 of 8 reviews
4 year ago

5 year ago

5 year ago

5 year ago

5 year ago

6 year ago

6 year ago

4.0

8 reviews

5
3
4
3
3
1
2
1
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
nicolasdewulf Universiteit Gent
Follow You need to be logged in order to follow users or courses
Sold
257
Member since
7 year
Number of followers
177
Documents
0
Last sold
3 weeks ago

3.9

39 reviews

5
13
4
16
3
7
2
1
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions