All Chapters Included
for
Applied Linear
Algebra
by
Peter J. Olver
and Chehrzad Shakiban
Second Edition
Undergraduate Texts in
Mathematics
,Table of Contents
Chapter 1. Linear Algebraic Systems ................................................... 1
Chapter 2. Vector Spaces and Bases ..................................................... 22
Chapter 3. Inner Products and Norms ................................................. 40
Chapter 4. Orthogonality ........................................................................ 59
Chapter 5. Minimization and Least Squares ..................................... 77
Chapter 6. Equilibrium ......................................................................... 94
Chapter 7. Linearity ............................................................................ 105
Chapter 8. Eigenvalues and Singular Values ................................... 124
Chapter 9. Iteration .............................................................................150
Chapter 10. Dynamics ........................................................................... 176
, Instructors’ Solutions Manual for
Chapter 1: Linear Algebraic Systems
Note: Solutions marked with a ⋆ do not appear in the Students’ Solutions Manual.
1.1.1. (b) Reduce the system to 6 u + v = 5, — 5 v = 5
; then use Back Substitution to solve
for u = 1, v = —1. 2 2
⋆
(c) Reduce the system to p + q — r = 0, —3 q + 5 r = 3, — r = 6; then solve for
p = 5, q = —11, r = —6.
(d) Reduce the system to 2 u — v + 2 w = 2, — 32 v + 4 w = 2, — w = 0; then solve for
u = 1 , v = — 4 , w = 0.
3 3
⋆ (e) Reduce the system to 5 x1 + 3 x2 — x3 = 9, 1 x2 — 2 x3 = 2 , 2 x3 = —2; then solve for
5 5 5
x1 = 4, x2 = —4, x3 = —1.
(f ) Reduce the system to x + z — 2 w = — 3, — y + 3 w = 1, — 4 z — 16w = — 4, 6w = 6; then
solve for x = 2, y = 2, z = —3, w = 1.
⋆ 1.1.2. Plugging in the values of x, y and z gives a + 2 b — c = 3, a — 2 — c = 1, 1 + 2 b + c = 2.
Solving this system yields a = 4, b = 0, and c = 1.
♥ 1.1.3. (a) With Forward Substitution, we just start with the top equation and work down.
Thus 2 x = —6 so x = —3. Plugging this into the second equation gives 12 + 3y = 3, and so
y = —3. Plugging the values of x and y in the third equation yields —3 + 4(—3) — z = 7, and
so z = —22.
⋆ (c) Start with the last equation and, assuming the coefficient of the last variable is /= 0, use
the operation to eliminate the last variable in all the preceding equations. Then, again as-
suming the coefficient of the next-to-last variable is non-zero, eliminate it from all but the
last two equations, and so on.
⋆ (d) For the systems in Exercise 1.1.1, the method works in all cases except (c) and (f ). Solv-
ing the reduced system by Forward Substitution reproduces the same solution (as it must):
(a) The system reduces to 3 x = 17 , x + 2 y = 3. (b) The reduced system is 15 u = 15 ,
2 2 2 2
3 u — 2 v = 5. (d) Reduce the system to2 3 u = 21 , 72u — v = 52, 3 u — 2 w = —1. (f ) Doesn’t
work since, after the first reduction, z doesn’t occur in the next to last equation.
√ ,
0
1.2.1. (a) 3 × 4, (b) 7, (c) 6, (d) ( —2 0 1 2 ), (e) . 2 ..
,
—6
√ , √ ,
√
.1 2 3
. 1 2 3
! 1 2 3 4, 1
. .
1.2.2. Examples: (a) .4 5 6.
,, ⋆ (b) 1 4 5
, (c) .4 5 6 7 .,, (e) . 2 ,..
7 8 9 7 8 9 3 3
! ! !
6 1 u 5
1.2.4. (b) A = , x= , b= ;
3 —2 v 5
1 ⃝c 2019 Peter J. Olver and Chehrzad Shakiban
, Chapter 1: Instructors’ Solutions Manual 3
√
, √ , √ ,
⋆ .
1 1 —1 p 0
(c) A = . 2 —1 3,
.
. , x = . q. , b = . 3. ;
, ,
—1 —1 0 r 6
√ , √ , √ ,
2 —1 2 u 2
—1 —1
.. .
. .
(d) A = 3,, x= v , , b = 1.
. .
,;
√ 3 0 ,—2 w 1
5 3 —1 √ , √ ,
x1 9
⋆
(e) A = ..
3 2 —1 . .
,, x=
. x . , b=.
2 , 5 .,;
1 1 2 x3 —1
√1 0 1 —2 , √ ,
x
√
—3 ,
. 2 —1 2 —1. . y. . —5.
(f ) A = . ., x =
. , b= . . .
.
0 —6 —4 2.
,
.
z, 2,
1 3 2 —1 w 1
1.2.5. (b) u + w = —1, u + v = —1, v + w = 2. The solution is u = —2, v = 1, w = 1.
(c) 3 x1 — x3 = 1, —2 x1 — x2 = 0, x1 + x2 — 3 x3 = 1.
The solution is x1 = 15, x2 = — 25, x3 = — 25.
⋆
(d) x + y — z — w = 0, —x + z + 2 w = 4, x — y + z = 1, 2 y — z + w = 5.
The solution is x = 2, y = 1, z = 0, w = 3.
√ , √
1 0 0 0 0 0 0 0 0 0,
. . .
0 1 0 0 0 0 0 0 0 0.
1.2.6. (a) I = . 0 0 1 0 0 ., O= 0 0 0 0 0 ..
. . .
. .
.
0 0 0 1 0, 0 0 0 0 0,
0 0 0 0 1 0 0 0 0 0
(b) I + O = I , I O = O I = O. No, it does not.
3 6 0!
1.2.7. (b) undefined, (c) , ⋆ (e) undefined,
—1 4 2√ ,
√
1 11 9, 9 —2 14
.
(f )
.
.3
.
—12 —12 .
,,
⋆ (h) . —8 6 —17 .
,.
.
7 8 8 12 —3 28
1.2.9. 1, 6, 11, 16.
√ , √2 0 0 0,
1 0 0
⋆ (b)
.
0 —2 0 0.
1.2.10. (a) 0 0 0 ., , . ..
0 0 3 0,
.
0 0 —1
0 0 0 —3
1.2.11. (a) True, ⋆ (b) true.
! !
x ! ax by ay
⋆ ♥ 1.2.12. (a) Let A = y
. Then AD = = ax = DA, so if a /= b these
z w az bw bz bw
!
a 0
are equal if and only if y = z = 0. (b) Every 2 × 2 matrix commutes with 0 a = a I.
⃝ c 2019 Peter J. Olver and Chehrzad Shakiban