FirstCourseinAbstract
, , ,
AlgebraA 8th EditionbyJohn
, , , , , ,
B.Fraleigh
, , , ,
, All ChaptersFullComplete
, , ,
, CONTENTS
1. Sets and Relations
, , 1
I. Groups and Subgroups , ,
2. Introduction and Examples 4 , ,
3. Binary Operations 7 ,
4. Isomorphic Binary Structures 9 , ,
5. Groups 13
6. Subgroups 17
7. Cyclic Groups 21
, ,
8. Generators and Cayley Digraphs 24 , , ,
II. Permutations, Cosets, and Direct Products , , , ,
9. Groups of Permutations 26 , ,
10. Orbits, Cycles, and the Alternating Groups , , , , ,
30
11. Cosets and the Theorem of Lagrange 34
, , , , ,
12. Direct Products and Finitely Generated Abelian Groups 37
, , , , , ,
13. Plane Isometries 42
,
III. Homomorphisms and Factor Groups , , ,
14. Homomorphisms 44
15. Factor Groups 49 ,
16. Factor-Group Computations and Simple Groups 53 , , , ,
17. Group Action on a Set 58
, , , ,
18. Applicationsof G-Sets to Counting 61 , , , ,
IV. Rings and Fields , ,
19. Rings and Fields 63
, ,
20. Integral Domains 68 ,
21. Fermat’s and Euler’s Theorems 72 , , ,
22. The Field of Quotients of an Integral Domain 74
, , , , , , ,
23. Rings of Polynomials 76
, ,
24. FactorizationofPolynomialsoveraField 79 , , , , ,
25. Noncommutative Examples 85 ,
26. Ordered Rings and Fields 87 , , ,
V. Ideals and Factor Rings , , ,
27. Homomorphisms and Factor Rings , , , 89
28. Primeand Maximal Ideals 94
, , ,
,29. Gröbner Bases for Ideals 99
, , ,
, VI. Extension Fields ,
30. Introductionto Extension Fields , , , 103
31. Vector Spaces 107 ,
32. Algebraic Extensions 111 ,
33. GeometricConstructions 115 ,
34. Finite Fields 116 ,
VII. Advanced Group Theory , ,
35. IsomorphismTheorems 117 ,
36. Series of Groups 119 , ,
37. Sylow Theorems 122 ,
38. Applications of the Sylow Theory 124 , , , ,
39. Free Abelian Groups 128
, ,
40. Free Groups 130
,
41. Group Presentations 133 ,
VIII. Groups in Topology , ,
42. Simplicial Complexes and Homology Groups 136 , , , ,
43. Computations of Homology Groups 138 , , ,
44. More Homology Computations and Applications 140
, , , ,
45. Homological Algebra 144 ,
IX. Factorization
46. Unique Factorization Domains 148 , ,
47. Euclidean Domains 151 ,
48. Gaussian Integers and Multiplicative Norms 154 , , , ,
X. Automorphisms and Galois Theory , , ,
49. Automorphisms of Fields 159 , ,
50. The Isomorphism Extension Theorem 164
, , ,
51. Splitting Fields 165 ,
52. SeparableExtensions 167 ,
53. TotallyInseparableExtensions 171 , ,
54. Galois Theory 173 ,
55. IllustrationsofGaloisTheory 176 , , ,
56. CyclotomicExtensions 183 ,
57. Insolvability of the Quintic 185 , , ,
APPENDIX Matrix Algebra , , , , 187
iv