100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Fysica II: Hoofdstuk 31: De Vergelijkingen van Maxwell en Elektromagnetische Golven

Rating
4.0
(2)
Sold
-
Pages
10
Uploaded on
18-05-2018
Written in
2017/2018

Fysica II: Hoofdstuk 31: De Vergelijkingen van Maxwell en Elektromagnetische Golven C000673A - Universiteit Gent 1ste jaar Biochemie en Biotechnologie, 2de semester

Institution
Module









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Module

Document information

Summarized whole book?
Unknown
Uploaded on
May 18, 2018
Number of pages
10
Written in
2017/2018
Type
Summary

Subjects

Content preview

Hoofdstuk 31: De Vergelijkingen van Maxwell en Elektromagnetische
Golven
Opbouw v/d wet van Ampère (algemene vorm):
- Dat een magnetisch veld wordt opgewekt door een elektrische stroom
wordt gegeven door de wet van Ampère (hoofdstuk 28):
⃗ ∙ 𝑑𝑙 = 𝜇0 𝐼𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛 .
∮𝐵
- Stel nu dat het omgekeerde ook waar is: Een veranderend elektrisch veld
wekt een magnetisch veld op. Ter ondersteuning gebruiken we een indirect
argument dat als volgt in elkaar zit. Volgens de wet van Ampère verdelen
we elk willekeurig gekozen pad in korte segmenten 𝑑𝑙 , nemen we het
inwendig product v.h magnetisch veld van elke 𝑑𝑙 met het magnetisch veld
⃗ in dat segment en tellen we al deze producten op (integreren) over het
𝐵
gekozen gesloten pad. Deze som is gelijk aan 𝜇0 maal de totale stroom 𝐼 die
gaat door het oppervlak dat wordt begrensd door het integratiepad v/d
lijnintegraal. Bij het toepassen v/d wet van
Ampère op het veld rond een rechte draad
(hoofstuk 28) stelden we de stroom voor als lopend
door het cirkeloppervlak omsloten door onze
cirkelvormige lus (surface 1). We zouden voor de
wet van Ampère even goed het zakvormige
oppervlak (surface 2) kunnen gebruiken, omdat er dezelfde stroom 𝐼
doorheen loopt.
- Bekijk nu het gesloten, cirkelvormige pad voor de
situatie v/d 2e figuur, waarbij een condensator
wordt ontladen. De wet van Ampère werkt voor
oppervlak 1 (stroom 𝐼 loopt erdoor), maar werkt
niet voor oppervlak 2, omdat er door oppervlak 2
geen stroom loopt. Er is een magnetisch veld rond de draad, dus is het
linkerlid v/d wet van Ampère ongelijk aan nul, toch gaat er geen stroom
doorheen oppervlak 2, dus is het rechterlid gelijk aan nul. We lijken dus
een tegenstrijdigheid te hebben.
- In de figuur is een magnetisch veld aanwezig, echter alleen als de lading
naar of vanaf de condensatorplaten stroomt. De veranderende lading op de
platen betekent dat het elektrisch veld ertussen verandert met de tijd.
Maxwell loste het probleem v/d afwezigheid van stroom door oppervlak 2
op door voor te stellen dat het rechterlid v/d wet van Ampère een extra
term zou moeten bevatten die te maken heeft met het veranderende
elektrisch veld.
- Laten we bekijken wat deze term moet zijn door die te bepalen voor het
veranderend elektrisch veld tussen de condensatorplaten. De lading 𝑄 op
een condensator met capaciteit 𝐶 is 𝑄 = 𝐶𝑉, waarbij 𝑉 het
potentiaalverschil is tussen de platen (hoofdstuk 24).

1

, Bedenk ook dat 𝑉 = 𝐸𝑑, waarbij 𝑑 de (kleine) afstand tussen de platen is
en 𝐸 de (homgene) elektrische veldsterkte ertussen, als we de effecten aan
de rand verwaarlozen (hoofdstuk 23). Ook geldt voor een condensator met
𝜀 𝐴
evenwijdige platen dat 𝐶 = 0𝑑 , waarin 𝐴 het oppervlak van elke plaat is
(hoofdstuk 24). We combineren dit tot:
𝜀0 𝐴
𝑄 = 𝐶𝑉 = ( ) (𝐸𝑑) = 𝜀0 𝐴𝐸.
𝑑
𝑑𝑄
- Als de lading op elke plaat verandert met een tempo 𝑑𝑡 , dan verandert de
elektrische veldsterkte met een evenredig tempo. Door deze uitdrukking
voor 𝑄 te differentiëren, vinden we dat:
𝑑𝑄 𝑑𝐸
= 𝜀0 𝐴 .
𝑑𝑡 𝑑𝑡
𝑑𝑄
- Nu is ook gelijk aan de stroom die in of uit de condensator stroomt:
𝑑𝑡
𝑑𝑄 𝑑𝐸 𝑑Φ𝐸
𝐼= = 𝜀0 𝐴 = 𝜀0 ,
𝑑𝑡 𝑑𝑡 𝑑𝑡
waarin Φ𝐸 = 𝐸𝐴 gelijk is aan de elektrische flux door het oppervlak dat
door het integratiepad wordt begrensd (surface 2).
- Als we de wet van Ampère zowel voor oppervlak 1 als 2 geldig willen
maken, kunnen we schrijven dat:
𝑑Φ𝐸
∮𝐵 ⃗ ∙ 𝑑𝑙 = 𝜇0 𝐼𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛 + 𝜇0 𝜀0 .
𝑑𝑡
Opbouw v/d wet van Gauss voor magnetisme:

- Zoals we in hoofdstuk 29 hebben gezien, is voor een magnetisch veld 𝐵
⃗ de
magnetische flux Φ𝐵 door een oppervlak gedefinieerd als:
⃗ ∙ 𝑑𝐴,
Φ𝐵 = ∫ 𝐵
waarbij de integraal genomen wordt over het gehele open of gesloten
oppervlak.
- De magnetische flux door een gesloten oppervlak (d.w.z. een oppervlak dat
een volume geheel omsluit) wordt geschreven als:
⃗ ∙ 𝑑𝐴.
Φ𝐵 = ∮ 𝐵
- In hoofdstuk 22 hebben we gezien dat in het geval v/e elektrisch veld de
elektrische flux Φ𝐸 door een gesloten oppervlak gelijk is aan de totale netto
lading 𝑄𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛 die door het oppervlak wordt omsloten, gedeeld door 𝜀0 :
𝑄𝑖𝑛𝑔𝑒𝑠𝑙𝑜𝑡𝑒𝑛
∮ 𝐸⃗ ∙ 𝑑𝐴 = .
𝜀0
Deze betrekking is de wet van Gauss voor elektriciteit.




2

Reviews from verified buyers

Showing all 2 reviews
3 year ago

5 year ago

4.0

2 reviews

5
0
4
2
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
vastgoedstudent123 Odisee Hogeschool
Follow You need to be logged in order to follow users or courses
Sold
36
Member since
8 year
Number of followers
35
Documents
56
Last sold
10 months ago

3.8

28 reviews

5
1
4
21
3
6
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these revision notes.

Didn't get what you expected? Choose another document

No problem! You can straightaway pick a different document that better suits what you're after.

Pay as you like, start learning straight away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and smashed it. It really can be that simple.”

Alisha Student

Frequently asked questions