100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Biochemistry year 2 term 1

Rating
-
Sold
2
Pages
25
Uploaded on
25-10-2020
Written in
2020/2021

A summary of the biochemistry lectures of the 2nd year of Life Sciences at the HAN. This document contains 7 lectures with detailed pictures and it consists of 24 pages.

Institution
Course










Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Chapter: 13, 14, 15, 16, 17, 18, 19, 23
Uploaded on
October 25, 2020
File latest updated on
December 10, 2020
Number of pages
25
Written in
2020/2021
Type
Summary

Subjects

Content preview

Lesson 1 Glycolysis (ch. 14)

What do we need energy for?
1. Mechanical work (muscle cells)
2. Molecule active transport
3. Macromolecule synthesis

What is the role of the citric acid cycle?
Central metabolic pathway

What is metabolism?
Conversion of:
- Fuel (carbohydrates, fats) to energy and building block 
catabolism (use of molecules to get energy)
- Energy and building blocks to construct the many molecules
that form the cells  anabolism (requires energy to produce
products the cell needs)

Catabolism
Ú 1st stage: large molecules are broken down into smaller units.
Preparation stage without capture of energy
o Proteins  amino acids
o Polysaccharides  monosaccharides (e.g. glucose)
o Fats  glucose, fatty acids.
nd
Ú 2 stage: molecules are degraded to simple units that play a central role in
metabolism. Most are converted into the acetyl unit of acetyl CoA. Small amount of
ATP is generated
Ú 3rd stage: ATP is produced from the complete oxidation of the acetyl unit of acetyl
CoA. Acetyl CoA brings acetyl units into the citric acid cycle, where they are
completely oxidized to CO2. Four pairs of electrons are transferred (three to NAD +
and one to FAD) for each acetyl group that is oxidized. A proton gradient is
generated as electrons flow from the reduced forms of these carriers to O 2, and this
gradient is used to synthesize ATP

 The acetyl group is the reacting part of the CoA and it binds the acetyl group (in
brown)
 The function of CoA is to accept and carry acetyl groups




1

,Cellular respiration  one of the central metabolic routes
Ú Glycolysis (fig. 1)  in the cytosol
o Glucose  2 pyruvate + ΔG (free energy)
o Preparatory phase
 Investment of 2 ATP
 Glucose has to be inside the cell
 First reaction: phosphorylation
 G3P is used for the next phase
o Payoff phase
 “(2)” means that we are counting per
glucose molecule
 Harvest 4 ATP
 End product  2 pyruvate
o Learning goal: metabolites, enzymes, side
products and recognition of formula
Ú Pyruvate to acetyl CoA  mitochondrion
Ú Citric acid cycle  mitochondrion
Ú Respiratory chain/oxidative phosphorylation 
mitochondrial membrane

Enzymes that play an important role in the glycolysis are: Figure 1: Glycolysis
1. Kinases: enzyme transfers phosphate group from ATP to another molecule
2. Dehydrogenases: belongs to oxidoreductases; catalyzes oxidative reactions
(NADH/FADH2 forming)
3. Isomerases: catalyzes structural isomerization (mutase shifts phosphate groups)
4. Enolases: enzyme of the lyase class (carbo-oxygen bond cleavage)

The intermediate step: conversion
For 1 glucose molecule: 2 pyruvate + 2 CoA + 2 NAD+  2 Acetyl-CoA + 2 CO2 + 2 NADH +
2H+

This intermediate reaction is catalyzed through an enzyme  the pyruvate dehydrogenase
 Requires 5 coenzymes
o TPP, lipoyl lysine and FAD are catalytic cofactors. These compounds are
regenerated, and so, not wasted in every cycle.
o NAD+ and CoA-SH are stoichiometric cofactors. These compounds are being
used as substrates.

Cofactors are small molecules that assist mainly enzymes in their catalytic activity
 Metals: e.g. Fe2+, Mg2+, Zn2+
 Small organic molecules (coenzymes)
o Tightly bound (prosthetic groups)
o Loosely bound (co-substrates)

 Apoenzyme + cofactor = holoenzyme
 Glycolysis: Glu + 2 ADP + 2 Pi + 2 NAD+  2 pyruvate + 2 ATP + 2 NADH + 2 H2O + 2 H+



2

,  Intermediate step/pyruvate to acetyl CoA: 2 pyruvate + 2 CoA + 2 NAD+  2 Acetyl-CoA + 2 CO2
+ 2 NADH + 2 H+
Lesson 2 Citric acid cycle, respiratory chain and oxidative
phosphorylation (ch. 16 & 19)

Citric acid cycle
Ú Cyclic pathway
o CO2 production
Ú Substrate level ATP
Ú NADH stores high energy electrons
o Oxidation of alcohol or oxidative decarboxylation
Ú QH2 stores high energy electrons
o Alkane reduction to Pi bond
Ú Decisive step where the cell is capable of going to burn the fuels with oxygen
Ú Important source of building blocks (amino acids,
nucleotides, bases, etc.)
Ú A 4-carbon compound (oxaloacetate)
condensates with a 2-carbon acetyl unit to give a
6-carbon tri-carboxylic acid

Step 1: citrate synthase forms citrate from oxaloacetate
and acetyl coenzyme A. The CoA bond is a high energy
bond; therefore, the hydrolysis of this bond drives the
reaction to the right

Step 2: citrate is isomerized into isocitrate. By
dehydration and hydration, the hydroxyl group is placed
on a different C-atom

Step 3: isocitrate is oxidized and decarboxylated to alpha
ketoglutarate. This is the reason why the hydroxyl group has been replaced. The isocitrate
undergoes 2 reactions; The first one is the redox reaction, where 1 NADH is being produced.
The second one is the decarboxylation. The blue
highlighted atom will leave isocitrate, which gives us CO2

Step 4: succinyl coenzyme A is formed by the oxidative
alpha ketoglutarate. This is an oxidative decarboxylation
reaction, namely, the formation of succinyl-CoA and CO2.
This produces 1 NADH. The bound group of the CoA makes this compound (succinyl-CoA) a
high energy compound. This high energy compound can
drive the reaction of an ATP molecule

Step 5: succinyl CoA synthetase transfers a Pi group to
ADP/GDP. Succinyl-CoA has enough energy to drive a
reaction of ADP/GDP into ATP/GTP to the right




3
$5.97
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
wendiy Hogeschool Arnhem en Nijmegen
Follow You need to be logged in order to follow users or courses
Sold
27
Member since
5 year
Number of followers
6
Documents
12
Last sold
1 month ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions