100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada 4.2 TrustPilot
logo-home
Resumen

Summary Business Intelligence & Data Management - 2019

Puntuación
2.0
(1)
Vendido
2
Páginas
57
Subido en
02-03-2020
Escrito en
2018/2019

Summary of Business Intelligence & Data Management 2019 Ch: 1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15 Art: Database Management (1.1, 1.6, 2.1-2.3, 3.1, 3.2, 3.6, 5.1, 5.2), Data Warehouse Design

Institución
Grado











Ups! No podemos cargar tu documento ahora. Inténtalo de nuevo o contacta con soporte.

Libro relacionado

Escuela, estudio y materia

Institución
Estudio
Grado

Información del documento

¿Un libro?
No
¿Qué capítulos están resumidos?
1, 2, 3, 4, 5, 6, 7, 8, 9, 14, 15
Subido en
2 de marzo de 2020
Número de páginas
57
Escrito en
2018/2019
Tipo
Resumen

Temas

Vista previa del contenido

Index
Articles Bi DM (Week 1-3).......................................................................................................................4
Art.1 Database Management (1.1, 1.6, 2.1-2.3, 3.1, 3.2, 3.6, 5.1, 5.2)...............................................4
1. Database systems.......................................................................................................................4
2. Data models................................................................................................................................7
3. The rational Database model......................................................................................................8
5. Normalization of the database tables.......................................................................................11
Art. 2 Data Warehouse Design.........................................................................................................12
1. Introduction to Data warehousing................................................................................................12
1.1 Decision Support Systems.......................................................................................................12
1.2 Data Warehousing..................................................................................................................13
1.3 Data Warehouse Architectures...............................................................................................14
1.3.1 Single-Layer Architecture.....................................................................................................14
1.3.2 Two-Layer Architecture.......................................................................................................14
1.3.3 Three-Layer Architecture.....................................................................................................16
1.3.4 An Additional Architecture Classification.............................................................................16
Art. 3 Multidimensional Database Technology.................................................................................18
BI DM Book (Week 4-11)......................................................................................................................22
Part 1 Priliminaries...........................................................................................................................22
Chapter 1: Introduction....................................................................................................................22
1.1 what is business analytics?.....................................................................................................22
1.3 Data mining and related terms...............................................................................................22
1.4 Big data...................................................................................................................................22
1.7 Terminology and notation......................................................................................................22
Chapter 2: Overview of the data mining process..............................................................................24
2.2 Core ideas in data mining.......................................................................................................24
2.3 The steps in data mining.........................................................................................................24
2.4 preliminary steps....................................................................................................................25
2.5 Predictive power and overfitting............................................................................................26
2.8 Automating data mining solutions..........................................................................................27
Part 2 Data exploration and dimension reduction................................................................................28
Chapter 3: Data Visualization...........................................................................................................28
3.1 Uses of Data visualization.......................................................................................................28
3.2 Data examples........................................................................................................................28
3.3 Basic charts: bar charts, line graphs and scatter plots............................................................28


1

, 3.4 Multidimensional visualization...............................................................................................29
3.5 Specialized visualizations........................................................................................................30
Chapter 4 Dimension Reduction.......................................................................................................31
4.1 Introduction............................................................................................................................31
4.2 Curse of Dimensionality..........................................................................................................31
4.3 Practical considerations..........................................................................................................31
4.4 Data summaries......................................................................................................................31
Part 3 Performance evaluation.............................................................................................................32
Chapter 5: Evaluating predictive performance.................................................................................32
5.1 Introduction............................................................................................................................32
5.2 Evaluating predictive performance.........................................................................................32
5.3 Judging classifier performance...............................................................................................33
5.4 Judging ranking performance.................................................................................................35
5.5 Oversampling..........................................................................................................................35
Part 4 Prediction and classifications methods......................................................................................37
Chapter 6: Multiple linear regression...............................................................................................37
6.1 Introduction............................................................................................................................37
6.2 Explanatory vs. predictive modelling......................................................................................37
6.3 Estimating the regression equation and prediction................................................................37
6.4 Variable selection in linear regression....................................................................................37
Chapter 7: k-Nearest-neighbours (k-NN)..........................................................................................39
7.1 The k-NN classifier (categorical outcome)..............................................................................39
7.2 k-NN for a numerical response...............................................................................................40
7.3 Advantages and shortcomings of k-NN algorithms.................................................................40
Chapter 8: The Naïve Bayes classifier...............................................................................................41
8.1 Introduction............................................................................................................................41
8.2 Applying the full (exact) Bayesian classifier............................................................................41
8.3 Advantages and shortcomings of the Naïve Bayes classifier...................................................41
Chapter 9: Classification and Regression Trees................................................................................43
9.1 Introduction............................................................................................................................43
9.2 Classification trees..................................................................................................................43
9.3 Evaluation the performance of a classification tree................................................................44
9.4 Avoiding overfitting................................................................................................................44
9.5 classification rules from trees.................................................................................................45
9.6 Classification trees for more than two classes........................................................................45
9.7 Regression trees.....................................................................................................................45

2

, 9.8 Advantage, weaknesses, and extensions................................................................................46
9.9 Improving prediction: multiple trees......................................................................................46
Part 5 Mining relationships among records..........................................................................................48
Chapter 14: Association rules and collaborative filtering.................................................................48
14.1 Association rules...................................................................................................................48
14.2 Collaborative filtering...........................................................................................................50
14.3 Summary...............................................................................................................................52
Chapter 15: Cluster analysis.............................................................................................................53
15.1 Introduction..........................................................................................................................53
15.2 Measuring distance between two observations...................................................................53
15.3 Measuring distance between two clusters...........................................................................54
15.4 Hierarchical (agglomerative) clustering................................................................................55
15.5 Non-hierarchical clustering: the k-means algorithm.............................................................56




3

, Articles Bi DM (Week 1-3)
Art.1 Database Management (1.1, 1.6, 2.1-2.3, 3.1, 3.2, 3.6, 5.1, 5.2)
1. Database systems
1.1 Data vs. Information
 Data are raw facts. The word raw indicates that the facts have not yet been processed to reveal
their meaning. Keep in mind that raw data must be properly formatted for storage, processing,
and presentation.

 Information is the result of processing raw data to reveal its meaning. To reveal meaning,
information requires context.

 Data are the foundation of information, which is the bedrock of knowledge—that is, the body of
information and facts about a specific subject. Knowledge implies familiarity, awareness, and
understanding of information as it applies to an environment. A key characteristic of knowledge
is that “new” knowledge can be derived from “old” knowledge.

Let’s summarize some key points:
 Data constitute the building blocks of information.
 Information is produced by processing data.
 Information is used to reveal the meaning of data.
 Accurate, relevant, and timely information is the key to good decision making.
 Good decision making is the key to organizational survival in a global environment.
 Data management is a discipline that focuses on the proper generation, storage, and retrieval of
data.

1.6 Database systems
 Unlike the file system, with its many separate and unrelated files, the database system consists
of logically related data stored in a single logical data repository. (The “logical” label reflects the
fact that, although the data repository appears to be a single unit to the end user, its contents
may actually be physically distributed among multiple data storage facilities and/or locations.)

 The current generation of DBMS software stores not only the data structures, but also the
relationships between those structures and the access paths to those structures—all in a central
location. Also takes care of defining, storing, and managing all required access paths to those
components.

1.6.1 The database system environment
 Database system refers to an organization of components that define and regulate the
collection, storage, management, and use of data within a database environment.

 From a general management point of view, the database system is composed of the five major
parts: hardware, software, people, procedures, and data.

1. Hardware: Hardware refers to all of the system’s physical devices.
2. Software: Although the most readily identified software is the DBMS itself, to make the database
system function fully, three types of software are needed: operating system software, DBMS
software, and application programs and utilities.
o Operating system software manages all hardware components and makes it possible for
all other software to run on the computers.

4
$5.99
Accede al documento completo:

100% de satisfacción garantizada
Inmediatamente disponible después del pago
Tanto en línea como en PDF
No estas atado a nada


Documento también disponible en un lote

Reseñas de compradores verificados

Se muestran los comentarios
5 año hace

Very concise

2.0

1 reseñas

5
0
4
0
3
0
2
1
1
0
Reseñas confiables sobre Stuvia

Todas las reseñas las realizan usuarios reales de Stuvia después de compras verificadas.

Conoce al vendedor

Seller avatar
Los indicadores de reputación están sujetos a la cantidad de artículos vendidos por una tarifa y las reseñas que ha recibido por esos documentos. Hay tres niveles: Bronce, Plata y Oro. Cuanto mayor reputación, más podrás confiar en la calidad del trabajo del vendedor.
marobo Tilburg University
Seguir Necesitas iniciar sesión para seguir a otros usuarios o asignaturas
Vendido
23
Miembro desde
6 año
Número de seguidores
21
Documentos
10
Última venta
2 año hace

2.0

1 reseñas

5
0
4
0
3
0
2
1
1
0

Recientemente visto por ti

Por qué los estudiantes eligen Stuvia

Creado por compañeros estudiantes, verificado por reseñas

Calidad en la que puedes confiar: escrito por estudiantes que aprobaron y evaluado por otros que han usado estos resúmenes.

¿No estás satisfecho? Elige otro documento

¡No te preocupes! Puedes elegir directamente otro documento que se ajuste mejor a lo que buscas.

Paga como quieras, empieza a estudiar al instante

Sin suscripción, sin compromisos. Paga como estés acostumbrado con tarjeta de crédito y descarga tu documento PDF inmediatamente.

Student with book image

“Comprado, descargado y aprobado. Así de fácil puede ser.”

Alisha Student

Preguntas frecuentes