100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Enzymology biocatalysis samentvatting

Rating
-
Sold
-
Pages
31
Uploaded on
12-02-2024
Written in
2023/2024

Summary of the 'biocatalysis' component within the course 'Enzymology BIC20806'.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
February 12, 2024
Number of pages
31
Written in
2023/2024
Type
Summary

Subjects

Content preview

biocatalysis
→ biological molecule acts as catalyst (= enhances rate of reaction without being destroyed
or incorporated in product)
catalyst in same form after catalyzation; small amount required to transform many molecules
catalysis; no effect on equilibrium position
Ea (activation energy) obtained from kinetic energy of reactant(s)
kinetic energy depends on vibrational, translational and rotational energy
increased vibrational energy → may weaken interatomic bonds




a: stabilization of transition state b: destabilization of ground state of reactants
homogeneous: freely dissolved in solution
→ organic catalyst; organometallic complex; enzyme in water
heterogeneous: solid in liquid/gas environment
→ inorganic catalyst; immobilized enzyme; enzyme in organic solvent
advantages enzymes:
- environmentally acceptable (natural) → biodegradable
- operate under mild conditions → less waste and energy requirements
- accept unnatural substrates
- enzymes are selective (chemo-, regio-, stereo-)
- can be made by fermentation
- can be modified
catalysis by complexation doesn’t influence activation energy; brings reactants together in
optimum orientation; way to decrease energy of activation by destabilization of ground state
catalysis by temporary formation of covalent intermediates; one reaction step is split up in
several steps with low activation energy
catalysis by general acid/base → selective (de)protonation
catalysis by distortion of conformation substrate → destabilization ground state

,cofactors: helper molecules assisting enzymes; (in)organice
coenzymes: specific type of organic cofactor; low molecular weight organic compounds


1. kinetic data and their interpretation
if reaction runs via intermediate; rate determined by slowest step
bimolecular: 2 molecules collide and react
monomolecular: 1 molecule dissociates or reacts
determination of reaction rates: concentration as function of time with chromatography


1st order reactions
rate depends on concentration of reactant




[𝐴]
rate: −
𝑑[𝐴]
𝑑𝑡
= 𝑘1 [𝐴] → 𝑙𝑛 [𝐴] 𝑡 = −𝑘1 𝑡
0
[A]0 is constant; 𝑙𝑛[𝐴]𝑡 = −𝑘1 𝑡 + 𝐶
plotting 𝑙𝑛[𝐴]𝑡 against t gives slope equal to −𝑘1
𝑡1/2 = halflife = time needed to reduce concentration reactant to 50%
𝑙𝑛2
𝑡1/2 =
𝑘1

2nd order reactions
rate depends on concentration of reactants




𝑑[𝐴] 𝑑[𝐵] 𝑑[𝑃]
− =− =+ = 𝑘2 [𝐴][𝐵]
𝑑𝑡 𝑑𝑡 𝑑𝑡

pseudo-first order kinetics
[𝐴]0 >> [𝐵]0
𝑑[𝐴] 𝑑[𝐵] 𝑑[𝑃]
− 𝑑𝑡 = − 𝑑𝑡 = + 𝑑𝑡 = 𝑘2 [𝐴][𝐵] = 𝑘1 ′[𝐵] with 𝑘1 ′ = 𝑘2 [𝐴]
water: 1000 g/L and 18 g/mol → [H2O] = 55.6 M


reversible reactions

, 𝑑[𝐴] 𝑑[𝐵]
A → B rate: − 𝑑𝑡
= 𝑑𝑡
= 𝑘1 [𝐴]
𝑑[𝐵] 𝑑[𝐴]
B → A rate: − 𝑑𝑡 = 𝑑𝑡
= 𝑘−1 [𝐵]


preequilibria



𝑑[𝐴⋅𝐵]
steady state approach: assume [A⋅B] is constant during large part of reaction ( = 0)
𝑑𝑡
→ 𝑘1 [𝐴][𝐵] = 𝑘−1 [𝐴 ⋅ 𝐵] + 𝑘2 [𝐴 ⋅ 𝐵]
𝑘1 𝑘2 [𝐴][𝐵]
→ 𝑣 = 𝑘2 [𝐴 ⋅ 𝐵] =
𝑘−1 +𝑘2
𝑘1
slow breakdown of A⋅B: 𝑘2 << 𝑘1 , 𝑘−1 → 𝑣 = 𝑘2 [𝐴][𝐵]
𝑘−1

rapid breakdown of A⋅B: 𝑘2 >> 𝑘−1 → 𝑣 = 𝑘1 [𝐴][𝐵]


Michaelis-Menten model for enzyme kinetics of one-substrate reaction



𝐾𝑀 : ratio of rate of breakdown and formation of enzyme-substrate complex
small value → stable tight complex
𝑘−1 + 𝑘2 [𝐸][𝑆]
𝐾𝑀 = =
𝑘1 [𝐸 ⋅ 𝑆]
[E⋅S] and [E] often not measurable, [𝐸] 𝑇 is known (total concentration enzyme)
[𝐸] 𝑇 = [𝐸] + [𝐸 ⋅ 𝑆]
[𝐸]𝑇 [𝑆]
[𝐸 ⋅ 𝑆] = now contains only measurable parameters
𝐾𝑀 +[𝑆]
𝑑[𝑃] 𝑘2 [𝐸]𝑇 [𝑆] 𝑉𝑚𝑎𝑥 [𝑆]
rate: 𝑣 = = 𝑘2 [𝐸 ⋅ 𝑆] = =
𝑑𝑡 𝐾𝑀 +[𝑆] 𝐾𝑀 +[𝑆]
𝑑[𝑃] 𝑉𝑚𝑎𝑥
first order; [S] is small; 𝑣 = = [𝑆]
𝑑𝑡 𝐾𝑀
𝑑[𝑃]
zero order; [S] is large; 𝑣 = = 𝑉𝑚𝑎𝑥
𝑑𝑡


Arrhenius equation
𝐸𝑎
Arrhenius equation: 𝑘𝑜𝑏𝑠 = 𝐴 ⋅ 𝑒 −𝑅𝑇
A = pre-exponential factor
𝐸
− 𝑎
𝑘𝑜𝑏𝑠 = 𝑃𝑍𝑒 𝑅𝑇
P = probability factor (bc not every collision is effective); Z = collision number (/s)

, determine activation energy by measuring k(obs) at 2 not too diff. temperatures and dividing
𝑘 𝐴𝑒−𝐸𝑎/𝑅𝑇1
(A cancels out) → 𝑘1 = −𝐸 /𝑅𝑇
2 𝐴𝑒 𝑎 2
1 𝑘1
𝐸𝑎 = 𝑅𝑙𝑛
1 1 𝑘2
( − )
𝑇2 𝑇1
activation energy is always positive because 𝑘1 < 𝑘2

transition state theory




Eyring equations
𝛥𝐺∓ 𝛥𝐻∓ 𝛥𝑆∓
𝑘𝐵 𝑇 𝑘𝐵 𝑇
𝑘= 𝑒 − 𝑅𝑇 and 𝑘= 𝑒 − 𝑅𝑇 𝑒− 𝑅 because G = H - TS
ℎ ℎ
𝑑𝑙𝑛(𝑘/𝑇) 𝛥𝐻 ∓
𝑑(1/𝑇)
=− 𝑅
(slope of graph)




solvation
bimolecular reaction: solvent has huge influence on rate
because both reactants are surrounded by solvent molecules, which must be pushed aside
so reactants are able to react
in water is more solvation than in DMF, due to strong dipole-dipole interactions; in DMF is
ground state destabilization

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
sanne035
Follow You need to be logged in order to follow users or courses
Sold
12
Member since
4 year
Number of followers
7
Documents
31
Last sold
3 weeks ago

3.0

1 reviews

5
0
4
0
3
1
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their exams and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can immediately select a different document that better matches what you need.

Pay how you prefer, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card or EFT and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions