100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

samenvatting statistiek handelswetenschappen

Beoordeling
-
Verkocht
1
Pagina's
83
Geüpload op
30-09-2023
Geschreven in
2022/2023

Zelfgemaakte samenvatting statistiek handelswetenschappen, geslaagd door het leren van deze samenvatting.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
30 september 2023
Aantal pagina's
83
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Samenvatting statistiek voor
bedrijfskundigen II
1. Begrippen (les 1)
Basiselementen van de statistiek
 Experimentele eenheden
o de bestudeerde objecten
o bv. studenten, machines, wielerwedstrijden, ...
 Populatie
o de verzameling experimentele eenheden
o bv. alle studenten aan de UGent, alle laptops die een bepaalde firma verkocht
heeft,...
 Variabele
o kenmerk of eigenschap van een individuele eenheid uit de populatie
o bv. lengte, levensduur, studieresultaat, ...
 Steekproef
o deelverzameling van de populatie
o bv. 20 willekeurig gekozen studenten of laptops, ...
 Statistische gevolgtrekking
o veralgemening vanuit de steekproef naar de populatie
 Betrouwbaarheidsmaat
o uitspraak over de (on)zekerheid van de statistische gevolgtrekking

Dia 17: we maken geen deel uit van de steekproef maar wel van de populatie

Soorten variabelen
 Kwantitatieve versus kwalitatieve variabelen
o kwantitatieve: een getal (bv. leeftijd)
o kwalitatieve: een kenmerk (bv. geslacht)
 Discrete versus continue variabelen
o discrete variabele: kan eindig of aftelbaar oneindig aantal verschillende waarden
aannemen (bv. aantal studenten)
o continue variabele: indien ook tussenliggende waarden mogelijk zijn (bv. gewicht,
afstand, ...)
Meetschalen
Getallen kunnen een verschillende betekenis hebben in verschillende situaties, bv. het getal 14 kan
wijzen op...
 het rugnummer van een voetballer
 de score die een student behaalt op een examen
 de 14de plaats in een wedstrijd
 De informatie die het getal 14 bevat, hangt af van de meetschaal die werd gebruikt om het getal
te bekomen.
 De meetschaal bepaalt welke wiskundige bewerkingen we kunnen toepassen op data / welke
statistische toetsen we kunnen uitvoeren.


 nominale meetschaal: waarden kunnen niet geordend worden

1

, o bv. geslacht
 ordinale meetschaal: waarden kunnen wel geordend worden
o bv. mening bij enquête: zeer goed, goed, matig, slecht, zeer slecht
 intervalschaal: heeft geen absoluut nulpunt
o bv. temperatuur in °C
 ratioschaal: heeft een absoluut nulpunt (0= afwezig kenmerk)
o bv. inkomen

Eigenschappen
 Ordenbaarheid: de waarden die een variabele kan aannemen, duiden een volgorde aan.
 Meeteenheid: verschillen tussen de waarden hebben een betekenis.
 Absoluut nulpunt: de waarde 0 stelt de afwezigheid van het kenmerk voor.

Voorbeelden
 Nominale variabelen
o geslacht – waarden: man, vrouw, andere
o kiesintenties – waarden: cd&v, groen, NVA, Open VLD, Vooruit, ...
o provincie van herkomst – waarden: Oost-Vlaanderen, West-Vlaanderen, ...
o rugnummers van voetballers – waarden: 1, 2, 3, ...
 Ordinale variabelen
o mate van instemming met een bepaalde stelling – waarden: volledig oneens, oneens,
eerder oneens, neutraal, eerder eens, ...
o dienstgraden ZAP – waarden: docent, hoofddocent, hoogleraar, gewoon hoogleraar
 Intervalvariabelen
o temperatuur in graden Celsius – waarden: 0, -10, 25, ...
o saldo op zichtrekeningen bij banken – waarden: 112,32; -1548,93; 23476,26, ...
 Ratiovariabelen
o lengte in cm – waarden: 0, 1, 141, 187, ...
o maandelijks netto-inkomen in € – waarden: 0, 1400, 2250, 3400, ...
o concentratietijd (in minuten) in de les – 0, 15, 45, 150, ...

Statistische toepassingen
 Beschrijvende statistiek
 beschrijven van verzamelde gegevens
o Grafische voorstellingen
 Staafjesdiagram
 Cirkeldiagram
 Boxplot
o Parameters
 centrale tendentie – ligging
 spreiding

 Verklarende statistiek
 trekt conclusies over de gehele groep op basis van een deel (steekproef) van deze groep

Parameters van ligging
 Modus: de waarde van de variabele met het hoogste aantal waarnemingen (frequentie)
 Mediaan: grenswaarde die de gerangschikte waarnemingen in twee gelijke groepen verdeelt
o bij oneven aantal gegevens: de middelste waarneming


2

, o bij even aantal gegevens: het rekenkundig gemiddelde van de twee middelste
waarnemingen
 Rekenkundig gemiddelde: de som van alle waarnemingen x 1, x2, ..., xn, gedeeld door het
totaal aantal waarnemingen n
Parameters van spreiding
 De variantie is de gemiddelde gekwadrateerde afwijking van de waarnemingen ten opzichte
van het rekenkundig gemiddelde
 De standaarddeviatie (of standaardafwijking) is de positieve vierkantswortel uit de variantie.




2. Stochastische variabelen: discrete en continue
kansveranderlijken
Stochastische variabelen
 Definitie:
o Variabele die numerieke waarden aanneemt bij de toevallige uitkomsten van een
experiment.
o Bij elke uitkomst wordt één en slechts één waarde aangenomen.
 Twee soorten:
o Discrete stochastische variabelen
 Discrete kansveranderlijken
 kunnen slechts een eindig of aftelbaar oneindig aantal waarden aannemen
 bv. aantal ogen bij een worp met een dobbelsteen
 experiment: gelijktijdig opwerpen van 2 eerlijke muntstukken, stochastische
variabele x: aantal keer kruis
o Continue stochastische variabelen
 Continue kansveranderlijken
 neemt een oneindig en niet aftelbaar aantal waarden aan, te vergelijken met een
interval of halfrechte op de reële getallenas
 bv. tijdsduur tussen 2 meldingen bij 112

Kansverdeling en kanshistogram




3

, Eigenschappen van de kansverdeling:
 p(x) ≥ 0 voor alle waarden van x
 ∑x p(x) = 1


Samenvattingswaarden
 Verwachtingswaarde:
o gewogen gemiddelde van de mogelijke waarden van de variabele
o μ = E(x) = ∑ x p(x)
 Variantie:
o gewogen gemiddelde van de gekwadrateerde afwijkingen t.o.v. μ
o σ2 = E [ (x − μ)2 ] = ∑ (x − μ)2 p(x)
 Standaardafwijking:
o σ = √σ2

Continue kansveranderlijken
De functie f(x) – die we de (kans)dichtheidsfunctie noemen – neemt hier de rol over van het
kanshistogram bij discrete stochastische variabelen.




4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
bestesvhw Universiteit Gent
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
28
Lid sinds
2 jaar
Aantal volgers
8
Documenten
9
Laatst verkocht
6 dagen geleden

3.0

3 beoordelingen

5
0
4
0
3
3
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen