100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

MAT2611 EXAM PACK 2023

Beoordeling
-
Verkocht
-
Pagina's
158
Cijfer
A+
Geüpload op
17-07-2023
Geschreven in
2022/2023

QUESTIONS WITH ANSWERS

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
17 juli 2023
Aantal pagina's
158
Geschreven in
2022/2023
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

MAT2611
EXAM PACK
2023
QUESTIONS WITH
ANSWERS
Email:

,Problem 1. Answer Exercise 2.22 from Addendum C. [10 marks]
Solution 1. The power set P(A) of a set A is the set of all subsets of A, i.e. we have
T ∈ P(A) ⇔ T ⊆ A.
Since ∅ ⊆ A (always, Why?)
and A ⊆ A always, the set P(A) always has at least the members ∅
and A, always.

As for example, since T ⊆ ∅ ⇔ T = ∅, we have:
P(∅) = {∅}.
Similarly, since T ⊆ {∅} if and only if either T = ∅ or else T = {∅}, we have:
P({∅}) =∅, {∅}
.
Similarly:
P({{∅}}) = ∅, {{∅}}
P({∅, {∅}}) = ∅, {∅}, {{∅}}, {∅, {∅}}
The rest can be figured out now.

Guess the number of elements of P(A) if A has exactly n elements and prove your guess.

Problem 2. Answer Exercise 3.12 & Exercise 3.13 from Addendum C. [5 + 5 = 10 marks]
f
Solution 2. Recall that X→
− Y if the following three conditions are satisfied:
(a) f ⊆ X × Y

(b) For each p ∈ X there exists a q ∈ Y such that (p, q) ∈ f .
0
(c) If (p, q) ∈ and
f (p, q) ∈ fthen q = 0q
.
f
Given X−
→ Y to be a one-to-one correspondence there is the additional property:
(d) For each q ∈ Y there exists a unique p ∈ X such that (p, q) ∈ f .
Hence the set:
(?) f −1 = (y , x ) : (x , y ) ∈ f
satisfies all the conditions (a)-(d) with X and Y interchanged.
−1
Verification for (a) From the definition in (?): (x , y ) ⇔
∈ (y
f , x) ∈ ⊆
f X × Y ⇒ (y, x) ∈ Y × X .
−1
Hence f ⊆ Y × X.

Verification for (b)&(c) Choose and fix any q ∈ Y . Using (d), for each q ∈ Y there exists a uniq
p ∈ X such that (p, q) ∈⇔ f(q, p) ∈ −1
f .

Hence for each q ∈ Y there exists a unique p ∈ X such that(q, p)∈ f −1 verifying the
conditions (b) & (c).


2

, MAT2611/201/1/2020


Verification for (d) For each p ∈ X there exists by (c) for
a unique
f q ∈ Y such that (p, q) ⇔
∈f
(q, p) ∈ −1 −1
f , verifying (d) for f.

The proof of f −1
◦f = 1Y and f−1◦f = 1X should now be clear from (a)-(d) for both
and ff−1.

[Total: 20 marks]




3

, MAT2611/201/2/2020




Tutorial letter 201/2/2020


LINEAR ALGEBRA
MAT2611

Semester 2


Department of Mathematical Sciences

This tutorial letter contains solutions for assignment 01.




BARCODE




university
Define tomorrow. of south africa

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
ZaProff University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1974
Lid sinds
2 jaar
Aantal volgers
527
Documenten
2137
Laatst verkocht
3 dagen geleden

3.8

309 beoordelingen

5
131
4
61
3
63
2
23
1
31

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen