100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting - 1-Wiskunde (1001FTIWIS)

Rating
5.0
(1)
Sold
3
Pages
101
Uploaded on
21-05-2023
Written in
2022/2023

Het van 1-wiskunde met zeer veel gegeven informatie tijdens de hoorcolleges. Deze samenvatting is een bundel van de genomen notities ui de lessen.

Institution
Course











Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
May 21, 2023
Number of pages
101
Written in
2022/2023
Type
Summary

Subjects

Content preview

1-Wiskunde
Table of Contents
Continuïteit van reële functies..............................................................................................................6
Reële functies...................................................................................................................................6
Soorten functies...............................................................................................................................7
De grafieken.....................................................................................................................................7
Functie vs Injectie............................................................................................................................8
Cyclometrische functies...................................................................................................................8
Continuïteit van elementaire functies...................................................................................................9
Geheelwaarde functie y=G(x)........................................................................................................10
Meervoudig voorschrift.................................................................................................................11
RC (Rechts continu).......................................................................................................................11
LC (Links continu).........................................................................................................................11
Continuïteit in een interval.............................................................................................................11
Continuïteit in een gesloten interval..............................................................................................12
Functie van Heaviside u(x).................................................................................................................12
Eigenschappen van continuïteit..........................................................................................................12
Bewerkingen met continue functies...............................................................................................12
Stelling van Weierstrass.................................................................................................................12
Stelling van tussenwaardes............................................................................................................13
De hoofdeigenschap ( van continue reële functies).......................................................................13
De stelling van bolzano (stelling van het nulpunt)........................................................................14
Elementaire grafieken....................................................................................................................15
Cyclometrische functies.....................................................................................................................18
BoogSinusFunctie..........................................................................................................................18
BoogCosinusFunctie......................................................................................................................18
BoogTangensFunctie.....................................................................................................................19
BoogCotangensFunctie..................................................................................................................19
Eigenschappen...............................................................................................................................20
Bewijzen........................................................................................................................................20
Oneindig.............................................................................................................................................22
Limieten..............................................................................................................................................23
DEF Links limiet...........................................................................................................................25
DEF Rechts limiet..........................................................................................................................25
Verband tussen limiet, linkerlimiet, rechterlimiet..........................................................................25
Rekenregels met.............................................................................................................................25
Eigenschappen van limieten..........................................................................................................26
Een limiet is uniek.....................................................................................................................26
Limiet en continuïteit (Hoofdeigenschap)................................................................................26
Stellingen over het berekenen van limieten...................................................................................26
Aparte limieten..............................................................................................................................27
Onbepaalde Vormen oplossen........................................................................................................27
Voorbeeld 1...............................................................................................................................28
Afgeleide............................................................................................................................................29
Afgeleiden bestaat niet in deze gevallen........................................................................................29
Linker en rechter afgeleiden..........................................................................................................30


1

, Verband afgeleiden in een punt en continuïteit in een punt...........................................................30
Hoge orde afgeleiden.....................................................................................................................31
Voorbeeld.......................................................................................................................................31
Afgeleiden van een inverse functies..............................................................................................31
Afgeleide functie............................................................................................................................32
Basis afgeleiden.............................................................................................................................32
Eigenschappen...............................................................................................................................32
Kettingregel...................................................................................................................................32
Differentiaal........................................................................................................................................33
Differentiaal functie.......................................................................................................................34
Basis differentiaal..........................................................................................................................34
Eigenschappen...............................................................................................................................34
verband toenamen en differentiaal.................................................................................................34
functies gegeven in parametervorm SPV (zonder expliciet voorschrift).......................................35
Samengevat....................................................................................................................................35
2de afgeleide van een functie gegeven door SPV..........................................................................35
Functies gegeven m.b.v. een impliciet voorschrift........................................................................37
Functies gegeven m.b.v. een impliciet voorschrift (verkorte vorm)..............................................38
2de afgeleide van een impliciet voorschrift...................................................................................38
Stellingen van de gemiddelde waarde................................................................................................39
Extreme waarde van een functie....................................................................................................39
De stelling van Fermat...................................................................................................................40
Berekenen min & max van een gegeven functies VB........................................................................41
De stellingen van de gemiddelde waarde...........................................................................................43
Stelling van Rolle...........................................................................................................................43
Bewijs........................................................................................................................................43
Stelling van Lagrange....................................................................................................................43
Bewijs........................................................................................................................................43
Stelling van Cauchy.......................................................................................................................44
Bewijs........................................................................................................................................44
Regel van de l’Hopital........................................................................................................................45
Verloop van functies van de eerste afgeleiden....................................................................................46
De brachistoChrone kromme..............................................................................................................47
Tautochrone kromme..........................................................................................................................47
Cycloïde..............................................................................................................................................47
SPV (Stelsel Parameter Vorm).......................................................................................................48
Hypocycloïde.................................................................................................................................48
Epicycloïde....................................................................................................................................48
Kettinglijnen.......................................................................................................................................48
Verloop van functies...........................................................................................................................49
Gebruik van de eerste afgeleiden...................................................................................................49
Gebruik van de tweede afgeleiden.................................................................................................49
Asymptoten.........................................................................................................................................50
Bepalen van asymptoten................................................................................................................50
VA x = a.....................................................................................................................................50
HA y = b....................................................................................................................................50
SA y = mx + q...........................................................................................................................51
Bepalen van asymptoten met SVP (kromme)................................................................................51
hyperbolische functies........................................................................................................................52
Soorten...........................................................................................................................................52


2

, Deel 1 eigenschappen....................................................................................................................52
Regel van Osborn......................................................................................................................52
Deel2 functies................................................................................................................................53
Deel3 inverse functies....................................................................................................................54
Deel4 afgeleide..............................................................................................................................54
Primitieve functies..............................................................................................................................55
Definities en eigenschappen..........................................................................................................55
De verzameling van alle primitieve functies van f (onbepaalde integraal)...............................56
Verband met differentiaal dx (afgeleiden).................................................................................56
Onbepaald integreren.....................................................................................................................57
Basis integralen.........................................................................................................................57
Eigenschappen..........................................................................................................................57
Integratie Methodes............................................................................................................................58
Substitutie......................................................................................................................................58
Doordachte substitutie...............................................................................................................58
Stappen.................................................................................................................................58
Wilde substitutie........................................................................................................................59
Tips.......................................................................................................................................59
Opmerking 1.........................................................................................................................60
Opmerking 2.........................................................................................................................60
Partiële integratie...........................................................................................................................61
regel...........................................................................................................................................61
bewijs........................................................................................................................................61
Opmerkingen.............................................................................................................................62
Integreren van rationale functies........................................................................................................63
splitsen in partieel breuken............................................................................................................63
Methode....................................................................................................................................63
Stelling van Jacobi....................................................................................................................64
Hoe integreren van veelterm?........................................................................................................65
H13 wortelvormen + goniometrische functies...................................................................................67
Irrationale functies (wortels)..........................................................................................................67
Tip1...........................................................................................................................................67
Tip2...........................................................................................................................................67
Goniometrische/ hyperbolische functies........................................................................................67
Belangrijk..................................................................................................................................67
Reductie (recursie) formules.....................................................................................................67
Stel integrand is en m & n zijn positief en even.......................................................................68
Stel integrand is en m & n zijn negatief en even......................................................................68
Samengevat..........................................................................................................................68
Stel integrand is en m & n zijn oneven (-2,-1,1,3,5,7,..)...........................................................68
Samengevat..........................................................................................................................68
Stel integrand is product van cos en sin met verschillend argument........................................69
H14 De bepaalde integraal.................................................................................................................70
Grondbegrippen.............................................................................................................................70
Verdeling van een interval, verfijning, onbeperkt verfijnen.....................................................70
Een keuze van punten inleid tot een verdeling van..............................................................70
Een verfijning van een verdeling..........................................................................................70
Onbeperkt verfijnen..............................................................................................................70
Riemannsom van f inbij een gegeven verdeling.......................................................................70
De bepaalde integraal van f in...................................................................................................71


3

, Integreerbare functies................................................................................................................71
Bijkomende definities...............................................................................................................72
Optelbaarheids eigenschap van de bepaalde integraal..............................................................72
De lineariteit van de bepaalde integraal....................................................................................72
Bepaalde integralen van een continue functie...............................................................................72
Middelwaarde stelling van de bepaalde integraal.....................................................................72
Eerste hoofdstelling van de integraalberekening......................................................................73
Tweede hoofdstelling van de integraalberekening....................................................................74
Berekenen van een bepaalde integraal......................................................................................74
Opmerkingen bij berekenen......................................................................................................75
Regel van Leibniz.....................................................................................................................76
H15 niet zien.......................................................................................................................................77
H16 oneigenlijke integralen...............................................................................................................77
Het begrip oneigenlijke integraal...................................................................................................77
1ste vorm...................................................................................................................................77
2de vorm...................................................................................................................................77
Probleem aanduiden.......................................................................................................................77
Convergentie en divergentie van een oneigenlijke integraal.........................................................78
Praktisch.........................................................................................................................................79
H2 Vlakke meetkunde Poolcoördinaten.............................................................................................80
Benodigdheden..............................................................................................................................80
Formules:..................................................................................................................................80
Hoe los je goniometrische vergelijking op?...................................................................................80
Hoe stel je poolcoördinaten op......................................................................................................80
Verband met carthesische (x, y) en poolcoördinaten (theta, rho)..................................................81
Poolvergelijking van een kromme.................................................................................................81
Eenvoudige vorm......................................................................................................................81
SPV (Stelsel Parameter Vergelijking) van een poolkromme....................................................81
De periode en de symmetrieën.......................................................................................................82
Besluit.......................................................................................................................................82
Raaklijn aan een poolkromme.......................................................................................................82
H17 toepassingen bepaalde integralen...............................................................................................83
Belangrijke formules......................................................................................................................83
Oppervlakte van een vlakdeel........................................................................................................83
verticaal.....................................................................................................................................83
Horizontaal................................................................................................................................84
Bij SPV.....................................................................................................................................86
Bij poolkromme........................................................................................................................86
Hoe grafische redeneren?.....................................................................................................86
Booglengte van de kromme...........................................................................................................88
Stappen:.....................................................................................................................................88
Carthesisch................................................................................................................................88
Bewijs formule.....................................................................................................................88
SPV..........................................................................................................................................88
Poolkromme..............................................................................................................................89
3 berekenen van de inhoud van een deel van de ruimte................................................................90
Oppervlakte vlakdeel................................................................................................................90
Inhoud (volume vierkant)..........................................................................................................90
Toepassing.................................................................................................................................90
H7 Functies van meer (dan 1) veranderlijken....................................................................................91


4
$7.78
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
robels
5.0
(1)

Reviews from verified buyers

Showing all reviews
1 year ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0
Trustworthy reviews on Stuvia

All reviews are made by real Stuvia users after verified purchases.

Get to know the seller

Seller avatar
robels Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
8
Member since
2 year
Number of followers
2
Documents
10
Last sold
3 weeks ago

5.0

1 reviews

5
1
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions