100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Basis Voor Onderzoeksmethoden & Statistiek ()

Beoordeling
-
Verkocht
1
Pagina's
17
Geüpload op
08-11-2022
Geschreven in
2022/2023

Alles uit de hoorcolleges over correlationeel en experimenteel onderzoek wat te maken heeft met NHST, BHE, SPSS, Jasp. Eigenlijk alles wat je nodig hebt voor alles met cijfers, formules, tabellen etc. Er is een duidelijk overzicht gemaakt met tussen de verschillende manier van NHST en BHE. Ook toevoegingen met begrippen en voorbeelden zitten erin. Wat er niet in staat is bijvoorbeeld kwaliteitskenmerken, steekproeven en fouten die gemaakt kunnen worden bij steekproeven etc.

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Geüpload op
8 november 2022
Aantal pagina's
17
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

NHST Correlationeel Regressie in Correlationeel → als we Experimenteel
(relatie/samenhang) het éne weten, kunnen we dan iets (causaliteit)
zeggen over het andere, zonder dit te
vragen

Stap 1: Toetskeuze: Pearson of Spearman? Toetskeuze: regressie Bij 2 groepen:
toetskeuze, Hangt hier samen met assumpties Toetskeuze: t-toets voor onafhankelijke groepen (2
hypotheses H0 (altijd =) en H1 (>, < of ≠) opstellen. ≠ wordt groepen, vergelijken op gemiddelde)
bepalen en H0 (altijd =) en H1 (>, < of ≠) opstellen. hier bijna niet gebruikt.
H0 (altijd =) en H1 (>, < of ≠) opstellen.
significantieniveau
Opstellen met Griekse letter rho, ρ Opstellen met Griekse letter bèta, β (bij
(α) kiezen
VB: H0:  = 0 en H1:  > 0 enkelvoudige regressie en toetsing 2 bij Opstellen met Griekse letter mu, µ (gemiddelde)
multipele regressie) VB: H0 : µDI = µC en H1: µDI > µC
α: meestal .05 VB: H0: gewicht = 0 en H1: gewicht > 0 Of: H0 : µDI - µC = 0 en H1: µDI - µC > 0

Opstellen met Griekse letter rho, ρ2 (bij α: meestal .05
multipele regressie toetsing 1)
VB: H0: 2 = 0 en H1: 2 > 0 Bij meer dan 2 groepen:
Toetskeuze: ANOVA
α: meestal .05
H0 (altijd =) en H1 (>, < of ≠) opstellen.

Opstellen met Griekse letter mu, µ (gemiddelde)

H0 : DI = EI = C en H1 : minimaal één van de
gemiddelden is anders

α: meestal .05

Stap 2: assumpties Mag ik de toetskeuze gebruiken? Mag ik het resultaat vertrouwen? Assumpties voor t toets en ANOVA voor
controleren onafhankelijke groepen:
1. Meetniveau checken 1. Lineaire samenhang tussen predictor en 1. Aselecte steekproef
(interval/ratio) afhankelijke variabele 2. Afhankelijke variabele van interval/ratio
2. Lineaire samenhang checken 2. Geen uitschieters (die te veel invloed meetniveau
hebben) 3. Onafhankelijke waarnemingen/ (twee)
groepen zijn onafhankelijk

, 3. Predictoren en afhankelijke variabele 4. Geen uitschieters (milde uitschieters
minimaal interval meetniveau hebben geen invloed)
4. De predictoren mogen onderling niet te 5. Scores moeten in beide/alle groepen
veel samenhangen ((multi)collinearity) normaal verdeeld zijn (bij n ≥ 30 niet
→ alleen bij multipele regressie problematisch: robuustheid)
5. Spreiding van residuen per x-waarde 6. Scores moeten in beide/alle groepen gelijke
gelijk (homoscedasticity) spreiding hebben (bij n ≥ 30 niet
problematisch: robuustheid + levene’s test)
Bij multipele regressie: ook een
dummyvariabele mogelijk. Twee categorieën,
zoals bij sekse: man 1, vrouw 0

Stap 3: Toetsingsgrootheid bij Pearson = r Bij enkelvoudige regressie en multipele Bij twee groepen:
toetsingsgrootheid (correlation coefficient) regressie toets 2: Toetsingsgrootheid = t-waarde
en p-waarde Toetsingsgrootheid bij Spearman = rs Toetsingsgrootheid b (richtingscoëfficiënt) kan T-waarde uitrekenen door:
hier niet omdat dit afhankelijk is van de 𝑀1−𝑀2
bepalen t=
𝑆𝐸
meetschaal, variabele maat is hier niet handig SE = standaardfout = spreiding
voor. Omrekenen naar een standaardmaat: t- M = steekproefgemiddelden
waarde/t-verdeling. JASP → Independent Samples T-Test → t
Toetsingsgrootheid = t-waarde p-waarde uit JASP halen
SPSS → Coefficients → t JASP → Independent Samples T-Test → p
p-waarde uit SPSS halen JASP kan eenzijdig of tweezijdig toetsen, dus altijd
p-waarde uit SPSS halen goede p-waarde
SPSS → Coefficients → Sig.




Staat er beide twee keer in, maar is
hetzelfde. Bij p-waarde .000 →
p < .001 Let op: p-waarde is bij regressie altijd
tweezijdig, dus bij eenzijdig moet je de p-
waarde delen door twee.
Bij meer dan twee groepen:
Let op: kijken naar B in tabel of deze groter is Toetsingsgrootheid = F-waarde
𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛
dan 0, dan pas p-waarde delen (assumpties) F = 𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛

, Bij multipele regressie toetsing 1: Spreiding binnen (within) de groepen en spreiding
Toetsingsgrootheid = F-waarde tussen (between) de groepen.

Grote F-waarde bij kleine spreiding within en grote
between. → makkelijker om te vergelijken
Kleine F-waarde bij grote spreiding within en kleine
between.




p-waarde uit SPSS halen in ANOVA




Stap 4: conclusie p-waarde > α = H0 meest waarschijnlijk p-waarde > α = H0 meest waarschijnlijk → H0 p-waarde > α = H0 meest waarschijnlijk → H0 niet
trekken over H0 → H0 niet verwerpen, resultaat is niet niet verwerpen, resultaat is niet significant verwerpen, resultaat is niet significant
significant
p-waarde < α = H1 meest waarschijnlijk → H0 p-waarde < α = H1 meest waarschijnlijk → H0
p-waarde < α = H1 meest waarschijnlijk verwerpen, resultaat is significant verwerpen, resultaat is significant
→ H0 verwerpen, resultaat is
significant

Stap 5: VB conclusie: Er is geen significante Bij regressie en multipele regressie toets 2: Bij twee groepen:
inhoudelijke positieve samenhang tussen Is de richtingscoëfficiënt significant groter dan VB conclusie: Ja, kinderen in de directe
conclusie en zelfwaardering en extraversie, r = 0? Ja, dus het is zinvol om regressie te instructiegroep hebben een significant hogere
effectgrootte .283, n = 10, p = .214, éénzijdig. gebruiken. Bij multipele regressie toets 2 alle gemiddelde rekenscore dan kinderen in de
stappen herhalen tot je alle predictoren gehad controlegroep.
bepalen
Maat voor effectgrootte bij correlatie: hebt.
correlatiecoëfficiënt (r) Effectgrootte: kijken naar verschil in
Bij multipele regressie toets 1: Ja, we kunnen groepsgemiddelden óf gestandaardiseerde maat
een significant deel van de variantie van Y gebruiken: Cohen’s d (in JASP)
verklaren door de samenhang met... Namelijk r2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
jasmijnmeijer Universiteit Utrecht
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
57
Lid sinds
6 jaar
Aantal volgers
18
Documenten
6
Laatst verkocht
3 maanden geleden

4.0

2 beoordelingen

5
0
4
2
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen