100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Algemene En Moleculaire Genetica

Rating
-
Sold
4
Pages
27
Uploaded on
22-07-2022
Written in
2021/2022

Dit document bestaat uit 27 pagina's en omvat alle theorie die je moet weten voor het examen. Bij de veelvoorkomende termen is de uitleg deels paars gekleurd om de belangrijkste informatie eruit te halen

Institution
Course













Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
July 22, 2022
Number of pages
27
Written in
2021/2022
Type
Summary

Subjects

Content preview

Samenvatting algemene en moleculaire genetica
Hoofdstuk 1 tot en met 13 samengevat van ons online “boek”
Oefeningen zijn niet toegevoegd. Veelvoorkomende termen vind je aan het einde van deze
samenvatting.
Ik heb dit vak in een keer gehaald.
27 pagina’s in totaal
Tips: weet de theorie en oefen veel oefeningen. De theorie is niet veel. De hoorcolleges vond
ik overbodig.



Hoofdstuk 1

Geschiedenis
- Griekse filosofen  pangenen = partikels die van de weefsels via het bloed
naar de voortplantingscellen worden getransporteerd
- 17de eeuw : theorie van preformatie : spermacel of bevruchte eicel bevat
voorgevormd individu (homunculus)
- 19e eeuw evolutie theorie
o Lamarck = kenmerken verworven tijdens het leven kunnen
doorgegeven worden aan de volgende generatie
o Darwin = natuurlijke selectie aan de basis van de evolutie
o Gregor Mendel = Hij ontwikkelde een theorie voor overerving op basis
van statistische patronen die hij waarnam bij kruisingsexperimenten bij
de tuinerwt
- 1888 = begrip chromosoom = gekleurde lichaam in de celkern
- 1909 = begrip gen
- 1953 = DNA structuur – helix structuur

Impact genetica op …
- Sociologisch
o Eugenetica = maatschappelijke beweging
 = poging om genetische kennis te gebruiken om het menselijke
ras te verbeteren via artificiële selectie (positieve en negatieve)
- Landbouw en veeteelt
o = verhoogde opbrengsten, grotere resistentie, het aanmaken van
nieuwe superieure soorten, genetisch gemodificeerde organismen
- Rechtswezen
o = introductie van DNA-identificatie testen
- Farmacologie
o Geneesmiddelenproductie
- Geneeskunde
o Victor Mc Kusick  catalogus – menselijke genen en ziektebeelden
o Continuum van ziektebeelden

, o 1991  grootste genome project – beinvloed alle specialisaties van
geneeskunde
 Bepalen sequentie basen – identificeren alle menselijke genen –
informatie opslaan databanken – ontwikkelen methodes analyse
data – werk aan ethische wettelijke sociale aspecten
- Diergeneeskunde
o Bezig met sequentiebepalingen van genoom van meerdere species
 Belangrijk voor biologische inzichtingen en het begrijpen van
genoomevolutie


Interactie erfelijke en omgevings factoren
- Genotype: de genetische samenstelling van een dier, plant of persoon
- Fenotype: Het uitzicht (fysisch, biochemisch en fysiologisch) van een dier,
plant of persoon
o Bepaald door genotype en omgevingsfactoren
- Natuur en omgeving verandert constant – genen zullen mee moeten
veranderen voor beste eigenschappen natuurlijke selectie = survival of the
fittest
- Genetische veranderding = genetische drift
o Verandering is zeer langzaam – dus reageert niet voldoende op
drastische veranderingen omgeving

Vergelijking humaan-chimpansee genoom
- 1%verschillend  eiwitten gemiddeld 1 a 2 aminozuren verschillen
- Verschillen:
o FOXP2 gen: belangrijk bij taal/spraak ontwikkeling  twee varianten
tussen mens en chimpansee
- Voorbeeld:
o verlies van genen  pseudogenisatie door verlies-van-functie mutaties
 olfactorische receptoren – zeer grote familie  ongeveer de helft
is inactief (pseudogen) – dus vormt geen eiwit  bij mens 4x
meer inactief dan bij apen
 verklaring: mens onafhankelijker van reukzin

voorbeeld hond:
- 99% gesequeneerd
- 39 paar chromosomen
- 5% gemeenschappelijk tussen mens muis en hond

Hoofdstuk 2

De wetten van Mendel

- Inleiding
o Basis hedendaagse genetica
o De doelstelling van zijn onderzoek was overervingspatronen te
bestuderen via een experimenteel model – Daartoe deed hij
intraspecies kruisingen

, o Experimenten:
 Selectie proefmodel – selectie variable kenmerken die makkelijk
te onderscheiden zijn – selectie stabiele kenemerken – kruising
juiste kenmerken

- Monohybride kruising
o Kruisingen met planten die verschillen in 1 kenmerk
 Conclusies = resultaten kruisingen identiek – F1 generatie gelijk
aan P generatie – zelfbestuiving F1 generatie geeft parentale
vormen in 3:1 verhouding
o Hypotheses
 Erfelijke kenmerken worden bepaald door factoren die in paar
voorkomen
 Er kunnen verschillende vormen van factor voorkomen – deze
vormen = allelen
 Bij de vorming van geslachtscellen (gameten) splitsen deze en
wordt een van beide doorgegeven. Bij versmelting van twee
geslachtscellen (zygote) wordt terug een paar gevormd
 Het dominante kenmerk komt tot uiting

o Eerste wet Mendel (segregatiewet of splitsingswet) : allelen splitsen en
segregeren willekeurig
o Testkruising = belangrijke vorm monohybride kruisingen
 Homozygoot recessief (rr) en heterozygoot dominant (Rr)
kruisen geeft 1:1
 Testkruisingen worden gebruikt om erachter te komen of om een
genetisch zuiver exemplaar gaat

- Dihybride kruisingen
o Ouderparen die verschillen in 2 kenmerken worden met elkaar gekruist
(rond vierkant – vierkant groen)
 Als deze 2 homozygoot zijn  AASS x aass (ook AAss x aaSS
geeft hetzelfde resultaat)  Alle F1 planten hebben hetzelfde
fenotype
 Na zelfbestuiving van de F1 generatie worden 4
verschillende fenotypes waargenomen die in een
verhouding 9 :3 :3 :1 voorkomen
 Dihybride kruisingen == gelijktijdig 2x monohybride kruisingen
o Tweede wet van Mendel (wet van onafhankelijke segregatie) : paren
van allelen segregeren onafhankelijk

- Oefeningen
o Basisprincipes van kansberekeningen:
 2 (of meer) onafhankelijke gebeurtenissen : kans dat beide
gebeuren is de vermenigvuldiging van de respectievelijke
kansen : productregel p1 x p2
 Indien een resultaat op verschillende manieren kan bereikt
worden : somregel p1 + p2

- Afwijkingen op wetten van Mendel

,o Codominantie = beide allelen komen tot uiting in het fenotype bij
heterozygoot
 Voorbeeld  bloedgroepen zoals het MN bloedgroep systeem
bij de mens en het FV bloedgroepsysteem bij het rund
o Onvolledige of partiële dominantie = heterozygoot vertoont intermediair
fenotype
 Genotypeverhouding wordt gelijk aan genotypeverhouding =
1:2:1
o Letale genen = wanneer in homozygote toestand in
kruisingsexperiment de verhouding 2:1 is ipv 3:1
o Multipele allelie = meer dan 2 allelen voorkomen voor genetisch
kenmerk
 Voorbeeld  ABO bloedgroepen mens – haarpigment katten
o Penetrantie = alhoewel het genetisch profiel aanwezig is om dit
fenotype tot uiting te brengen, het fenotype toch niet aanwezig is
o Pleiotropie = gen beinvloed meer dan 1 kenmerk (verband tussen de
beinvloedde kenmerken is lastig te leggen)
 Voorbeeld  Gladde tong syndrome bij het rund: zeer kwetsbare
tong, anemie, laag ijzergehalte, dunne en korte haren, jeuk en
eczeem
o Epistasie = Twee of meer genen kunnen interfereren met elkaar waarbij
bepaalde allelen van het ene gen het effect van de allelen van het
andere gen kunnen te niet doen
 Men spreekt dan over een epistatische werking van dit allel over
deze van het andere gen (hypostatisch)
 4 verschillende soorten:
 Dominante epistasie
o Voorbeeld 
 Kruising van ZZSS x zzss (zwart x
goudkleur)
 F1: ZzSs: allemaal zwart
 Kruising van F1’s
 F2: 12 zwarte (9 Z.S. + 3 Z.ss)
 3 zilverkleurige (3 zzS.)
 1 goudkleurige (1 zzss)
o 12:3:1
 Wederkerige dominante epistasie
o Voorbeeld 
 Parentale stammen: AAbb x aaBB (beide
wit)
 F1: AaBb (wit)
 F2: 15 wit (9 A.B. + 3 aaB. + 3 A.bb)
 1 gepigmenteerd (1 aabb)
o 15:1
 Recessieve epistasie == cryptomerie
o Voorbeeld 
 Parentale stammen: zzCC x ZZcc
(wildkleurig en wit)
 F1: ZzCc (zwart)

,  F2: 9 zwarte ( 9 Z.C.)
 3 wildkleurig ( 3 zzC.)
 4 wit ( 3 Z.cc + 1 zzcc)
o 9:3:4
 Wederkerige recessieve epistasie
o Voorbeeld 
 Parentale stammen: PPcc (wit) en ppCC
(wit)
 F1: PpCc (paars)
 F2: 9 paarse ( 9 P.C.)
 7 witte ( 3 ppC., 3 P.cc en 1 ppcc)
o 9:7




o
o Gen C zorgt voor omzetting van precursor 1 in
precursor 2 en gen P voor de omzetting van
precursor 2 in anthocyanine

Hoofdstuk 3

Structuur van chromosomen

- In de nucleus vormen chromosomen een chromatine netwerk wat een dubbele
DNA-helix en histonen bevat (=positief geladen eiwitten die op negatief
geladen DNA binden)
o Deze samen vormen nucleosomen – nestelen zich verder in elkaar
tijdens celdeling = chromatine vezels




-

Mitose

, - Lichaamscellen bevatten 2 sets van chromosomen = diploid
- Celdeling = genetisch materiaal verdeeld over de 2 helften van een cel –
gevolgd door cytokinese qaarbij het cytoplasma wordt verdeeeld
- Na celdeling  cel in interfase = verschillende stadia
o G1 = onmiddellijk na beëindigen celdeling
o G0 = een cel kan (tijdelijk) in rust gaan en niet verder delen
o S = na de G1 fase  DNA zal gerepliceerd worden
o G2 = celvolume wordt verdubbeld en DNA gerepliceerd zodat mitose
geïnitieerd kan worden

- Fases mitose 
o Profase = chromosomen worden gecondenseerd en 2 centriolen komen
in het cytoplasma waaruit microtubuli worden gevormd.
o Prometafase = chromosomen condenseren verder, nucleaire
enveloppe (membraan cytoplasma kern) wordt afgebroken en
centriolen worden aan beide kanten van cel geplaatst, chromosomen
worden aan microtubuli gehecht.
o Metafase = de chromosomen worden gealigneerd. De chromosomen
zijn in meest gecondenseerde fase en dus best zichtbare vorm.
o Anafase = de twee dochterchromatiden worden gescheiden in de
richting van de twee polen.
o Telofase = de gescheiden chromosomen worden omgeven door
nucleaire enveloppes en het cytoplasma wordt gescheiden ter vorming
van twee dochtercellen

Meiose

- Halvering genetisch materiaal om gameten te vormen = haploid
- Na bevruchting  eicel + spermacel = 2xhaploid = diploide cel
- Meiose bestaat uit 2 celdelingen
o 1e deling 
 Profase I (hier kan crossing over tussen homologe
chromosomen plaatsvinden)
 Daarna metafase I, anafase I en telofase I doorlopen
o 2e deling 
 Gelijk aan mitotische deling waarbij elk paar chromatiden van
een chromosoom worden gescheiden
- De vorming van eicellen (oögenese) is verschillend van deze van
spermacellen (spermatogenese)
o Spermatogenese gebeurt in de teelbal en is het resultaat van twee
meiotische delingen van de primaire spermatocyt waarbij steeds de
hoeveelheid erfelijk materiaal en cytoplasma gelijkwaardig worden
verdeeld zodat 4 spermacellen worden gevormd. Dit proces vindt
gedurende gans de levensloop plaats
o Bij oogenese zullen ook twee meiotische delingen plaatsvinden maar
wordt de hoeveelheid cytoplasma niet gelijkwaardig verdeeld zodat
polaire lichaampjes worden gevormd. Er wordt maar één eicel gevormd

Cytogenetische studie van chromosoomstructuren

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
mereltramper universiteit antwerpen
Follow You need to be logged in order to follow users or courses
Sold
37
Member since
3 year
Number of followers
20
Documents
17
Last sold
1 month ago

3.8

5 reviews

5
0
4
4
3
1
2
0
1
0

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions