100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary methods: econometrics 1

Rating
-
Sold
8
Pages
12
Uploaded on
01-10-2021
Written in
2021/2022

Summary of the book, slides and my notes for the course: methods: econometrics 1.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Study
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
1 until 5 (included)
Uploaded on
October 1, 2021
Number of pages
12
Written in
2021/2022
Type
Summary

Subjects

Content preview

Methods: Econometrics 1
Lecture 1: Selection on observables

What is econometrics about?
Econometrics is about building alternate universes (i.e., counterfactuals), to unravel the
effects of a certain policy for example.

This econometrics 1 course is focused on the total effect of a specific treatment on the
outcome, not the channel through which this is caused (that is what we will discuss in
econometrics 2). Econometrics 2 disentangles the direct effect from the indirect effect
(mediators, etc.).

The focus of this course is also about research designs – something you must think about
before you start doing your analysis.
The research designs that we will discuss are the following:
- Selection of observables
- Randomized controlled trials
- Instrumental variable approach
- Regression discontinuity design
- Difference-in-differences

Selection on observables
A regression is only unbiased when treatment assignment is independent of potential
outcomes. All covariates must be included in the regression to ensure unbiasedness.

The problem with estimating a treatment effect is that there is no counterfactual observed.
There are 2 naïve ways of assessing this counterfactual (example is to look at the grow of a
plant using Pokon):
- Just comparing the plant at time t and time t+1, and then concluding that the plant
would have looked worse without the treatment.
o Problem: selection bias/ omitted variables bias: other things could have been
the reason for why the plant grew the way it did. It does not have to be Pokon.
This bias can lead to over- or underestimation of the real treatment effect.
Therefore, there is non-random selection into treatment (it can be the case that
you take more care of the plant after using Pokon or that you use it if your
plant is already almost dead) and this leads to the selection bias. To put it
differently, there is variable that is a common cause of both the treatment and
the outcome  “confounder”.
o Non-random selection into treatment can be realized by subjects themselves or
by a policymaker/us.
o The selection bias can be resolved if all confounders are controlled for.
However, sometimes, there might be confounders that are unobservable.
- Cross-sectional comparison: compare 2 plants, one which gets Pokon, and the other
which doesn’t get Pokon. The problem with this is that the plants can be different in
other terms as well, and, therefore, the treatment effect may be caused by other factors
than just Pokon.

Potential outcomes

, An individual has 2 potential outcomes. The first one is the road that you take and the second
one is the road that you did not take. Basically, this means the outcome if you were assigned
to treatment vs. the outcome if you were assigned to control. The unit causal effect is the
difference between those 2 potential outcomes. The problem is that we only observe one of
them.

The average causal effect is the difference between the average potential outcomes if all units
were assigned to treatment and the average of potential outcomes if all units were assigned to
control.
To estimate the average causal effect, we need to randomly assign some units to treatment
and some units to control. The mean of the random sample from the population is then the
unbiased estimator for the mean of the population, thanks to randomization.

A research design should always entail why selection into treatment was indeed random. If
this is the case, the exchangeability assumption holds (we can fairly compare treatment and
control group).

Selection bias
Y(0,i) = outcome of subject i in the control group
Y(1,i) = outcome of subject i in the treatment

Unit causal effect = Y(1,i) – Y(0,i)

Difference in group means = average causal effect + selection bias

Causal diagrams
These visualize how units were selected into treatment (i.e., your identification problem).




The causal diagram shows a causal relationship between variables in a causal model.
Some rules:
- Nodes are the variables in your model (nodes earlier in time should be on the left of
the diagram).
- Arrows are the causal connections
- A dashed arrow signifies an unobserved cause
- A causal relationship goes only in one direction
- A path is a sequence of arrows connecting two nodes: arrows can go in either
direction
o A directed path has only arrows in the same direction
- Graphs are acyclic: no directed paths from variable to itself
$5.39
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
britt1910 Tilburg University
Follow You need to be logged in order to follow users or courses
Sold
321
Member since
5 year
Number of followers
207
Documents
27
Last sold
1 month ago

4.3

26 reviews

5
14
4
8
3
2
2
1
1
1

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions