100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Summary Cell Signalling

Rating
-
Sold
-
Pages
12
Uploaded on
16-07-2021
Written in
2020/2021

These notes contain an introduction to the topic of cell signalling and more in detail description of some of the most important pathways in the cell and their receptors. The notes include: different types of signalling, generic receptor description, hormone classification, insulin biosynthesis and secretion, receptor Tyrosine kinase and pathway (MAPK, PI3K), receptor guanylyl cyclase, G protein-coupled receptors, JAK/STAT receptors, biosynthesis of steroid hormones, nuclear receptors and death signalling.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Connected book

Written for

Institution
Course

Document information

Summarized whole book?
No
Which chapters are summarized?
Chapter 12
Uploaded on
July 16, 2021
Number of pages
12
Written in
2020/2021
Type
Summary

Subjects

Content preview

CELL SIGNALLING

At any given time cells are communicating through millions of signals that can be either physical or
converted to chemical. In order to detect a chemical signal (hormones and neurotransmitters), the
target cell must have the correct receptor to receive that particular signal and trigger a response
(note that physical stimuli are converted to chemical at the level of the receptor). The signals are
often relayed inside the cell through a signalling pathway resulting in “change” (ex: metabolic
alteration, changes in gene expression, cellular process activation/deactivation) → extracellular
signal in converted into an intracellular response.
A first classification can be done on the basis of the distance of action of the ligand:
• AUTOCRINE SIGNALLING: the secreting cell is also the target (the cell stimulates itself);
the receptors for the released ligand are on the cell surface or inside that cell.
• CONTACT SIGNALLING: signalling molecules diffuse between neighbouring cells
directly via gap junctions (permeability regulated by [Ca2+], [H+], [cAMP], membrane
potential). This allows a cellular response to a signal that only one cell has received.
• PARACRINE SIGNALLING: cells communicate over a relatively short distance
(immediate surrounding area).
• ENDOCRINE SIGNALLING: signals can affect sites of the body that are much further
away; ligands (hormones) travel this distance via the blood stream, this means that they are
diluted during the way and reach their targets in low concentrations.
The response to a signal may occur in minutes (ex: changes in the activity of a protein) or take
hours/days (ex: metabolic or genetic alterations).


RECEPTORS
A receptor is composed of two domains: a ligand binding domain (LBG) and an effector domain
(ED). There can be multiple isoforms for both: two receptors might respond to the same ligand but
have different downstream effects (same LBD & different ED) or different ligands could have the
same overall effect (different LBD & same ED). One could also create a chimeric receptor with
novel properties (coupling different LBDs and EDs).
Because receptors act to accelerate an intracellular pathway they can be seen in many ways as
analogous to enzymes (some actually are), thus a series of properties can be identified:
1) SPECIFICITY: precise molecular complementarity between ligand and receptor (mediated by
weak, noncovalent interactions).
2) AFFINITY (between ligand and receptor): can be expressed as the dissociation constant Kd =
[R][L]/[RL], commonly ≤ 10-7 M (receptor detects micromolar to nanomolar concentrations of the
ligand).
3) SATURATION: concentration at which no more receptors are free to bind signal molecules.

, 4) COOPERATIVITY: receptor-ligand interaction results in large changes in receptor activation
with small changes in ligand concentration.
5) AMPLIFICATION: [RL] complex activates an enzyme that in turn catalyses the activation of
many molecules of another enzyme and so on, resulting in an amplification of the initial signal
within milliseconds (a cascade).
6) INTEGRATION: multiple signal (can have opposite/similar effects) combine to produce a
unified response.
7) DESENSITIZATION: when a signal in continuously present it causes the receptor to adapt and
no longer respond until the signal falls below a certain threshold.


The receptor-ligand interaction model suggests that receptors exist in one of two conformations: R
& R*, with the understanding that R* can exist even in the absence of an agonist. This means that R
may change conformation to R* even in the absence of the agonist A. A may bind to both states but
has a higher affinity for R*, thus stabilizing the active state and producing a cellular response.


(KA, inactive state)
A+R ↔ AR
(E0, vacant states) ↕ ↕ (E1, occupied states)
A + R* ↔ AR*
(KA*, active state)




Receptors can either be ionotropic (receptors are themselves ion channels) and metabotropic
(receptors that activate a second messenger).
The major classes of receptors are: gated ion channels (direct and rapid transmission), serpentine
receptor/G protein-coupled receptor (receptor activates an intracellular G protein which regulates
an enzyme that generates a second messenger), enzyme-linked receptors (either with intrinsic
enzyme activity or associated to and regulate one), steroid/nuclear receptor (receptor protein that
can regulate expression of specific genes, can be located in the cytosol or directly in the nucleus).


NICOTINIC ACETYLCHOLINE RECEPTOR (IONOTROPIC):
Pentameric structure (2 alpha subunits, 1 beta, 1 gamma, 1 delta), each subunit is composed of 4
transmembrane alpha-helices (M1 to M4). The binding sites for ACh are on the alpha subunits, and
the cations that pass through the channel are Na+, K+ and Ca++.
Hydrophobic leucine (on M2) residues are exposed to the pore when ACh is not bound, therefore
preventing cation passage. When ACh binds → allosteric modification generates rotation of M2 and
thus of leucine residues, exposing polar residues and allowing cation passage.
$10.18
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached

Get to know the seller
Seller avatar
matteogessaroli

Get to know the seller

Seller avatar
matteogessaroli Universirty of Bologna
Follow You need to be logged in order to follow users or courses
Sold
0
Member since
4 year
Number of followers
0
Documents
5
Last sold
-

0.0

0 reviews

5
0
4
0
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions